Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Mol Med ; 30(2): 147-163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38036391

RESUMEN

Proteolytic processes on cell surfaces and extracellular matrix (ECM) sustain cell behavior and tissue integrity in health and disease. Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) remodel cell microenvironments through irreversible proteolysis of ECM proteins and cell surface bioactive molecules. Pan-MMP inhibitors in inflammation and cancer clinical trials have encountered challenges due to promiscuous activities of MMPs. Systems biology advances revealed that MMPs initiate multifactorial proteolytic cascades, creating new substrates, activating or suppressing other MMPs, and generating signaling molecules. This review highlights the intricate network that underscores the role of MMPs beyond individual substrate-enzyme activities. Gaining insight into MMP function and tissue specificity is crucial for developing effective drug discovery strategies and novel therapeutics. This requires considering the dynamic cellular processes and consequences of network proteolysis.


Asunto(s)
Metaloproteasas , Neoplasias , Humanos , Proteolisis , Metaloproteasas/análisis , Metaloproteasas/metabolismo , Neoplasias/metabolismo , Matriz Extracelular/metabolismo , Inflamación/metabolismo , Microambiente Tumoral
6.
Blood ; 136(23): 2607-2619, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-32929449

RESUMEN

The fate of hematopoietic stem and progenitor cells (HSPC) is tightly regulated by their bone marrow (BM) microenvironment (ME). BM transplantation (BMT) frequently requires irradiation preconditioning to ablate endogenous hematopoietic cells. Whether the stromal ME is damaged and how it recovers after irradiation is unknown. We report that BM mesenchymal stromal cells (MSC) undergo massive damage to their mitochondrial function after irradiation. Donor healthy HSPC transfer functional mitochondria to the stromal ME, thus improving mitochondria activity in recipient MSC. Mitochondrial transfer to MSC is cell-contact dependent and mediated by HSPC connexin-43 (Cx43). Hematopoietic Cx43-deficient chimeric mice show reduced mitochondria transfer, which was rescued upon re-expression of Cx43 in HSPC or culture with isolated mitochondria from Cx43 deficient HSPCs. Increased intracellular adenosine triphosphate levels activate the purinergic receptor P2RX7 and lead to reduced activity of adenosine 5'-monophosphate-activated protein kinase (AMPK) in HSPC, dramatically increasing mitochondria transfer to BM MSC. Host stromal ME recovery and donor HSPC engraftment were augmented after mitochondria transfer. Deficiency of Cx43 delayed mesenchymal and osteogenic regeneration while in vivo AMPK inhibition increased stromal recovery. As a consequence, the hematopoietic compartment reconstitution was improved because of the recovery of the supportive stromal ME. Our findings demonstrate that healthy donor HSPC not only reconstitute the hematopoietic system after transplantation, but also support and induce the metabolic recovery of their irradiated, damaged ME via mitochondria transfer. Understanding the mechanisms regulating stromal recovery after myeloablative stress are of high clinical interest to optimize BMT procedures and underscore the importance of accessory, non-HSC to accelerate hematopoietic engraftment.


Asunto(s)
Médula Ósea/fisiología , Conexina 43/metabolismo , Células Madre Hematopoyéticas/metabolismo , Mitocondrias/trasplante , Regeneración , Animales , Humanos , Ratones
7.
Nat Commun ; 11(1): 3547, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669546

RESUMEN

Neutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils. Increased release of BM lactate preferentially promotes neutrophil mobilization by reducing endothelial VE-Cadherin expression, increasing BM vascular permeability via endothelial lactate-receptor GPR81 signaling. GPR81-/- mice mobilize reduced levels of neutrophils in response to LPS, unless rescued by VE-Cadherin disrupting antibodies. Lactate administration also induces release of the BM neutrophil mobilizers G-CSF, CXCL1 and CXCL2, indicating that this metabolite drives neutrophil mobilization via multiple pathways. Our study reveals a metabolic crosstalk between lactate-producing neutrophils and BM endothelium, which controls neutrophil mobilization under bacterial infection.


Asunto(s)
Células de la Médula Ósea/inmunología , Ácido Láctico/metabolismo , Neutrófilos/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Infecciones por Salmonella/inmunología , Animales , Médula Ósea/irrigación sanguínea , Células de la Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Femenino , Humanos , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Noqueados , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/genética , Infecciones por Salmonella/microbiología , Salmonella typhimurium/inmunología , Transducción de Señal/inmunología
8.
Blood Sci ; 2(2): 66-67, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35402819
9.
Exp Hematol ; 78: 1-10, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31494174

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are essential for daily mature blood cell production, host immunity, and osteoclast-mediated bone turnover. The timing at which stem cells give rise to mature blood and immune cells while maintaining the bone marrow (BM) reservoir of undifferentiated HSPCs and how these opposite tasks are synchronized are poorly understood. Previous studies revealed that daily light onset activates norepinephrine (NE)-induced BM CXCL12 downregulation, followed by CXCR4+ HSPC release to the circulation. Recently, we reported that daily light onset induces transient elevations of BM NE and tumor necrosis factor (TNF), which metabolically program BM HSPC differentiation and recruitment to replenish the blood. In contrast, darkness onset induces lower elevations of BM NE and TNF, activating melatonin production, which metabolically reprograms HSPCs, increasing their short- and long-term repopulation potential, and BM maintenance. How the functions of BM-retained HSPCs are influenced by daily light and darkness cycles and their clinical potential are further discussed.


Asunto(s)
Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Ritmo Circadiano/fisiología , Oscuridad , Células Madre Hematopoyéticas/metabolismo , Luz , Melatonina/metabolismo , Norepinefrina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células Madre Hematopoyéticas/citología , Humanos
11.
Cell Stem Cell ; 23(4): 572-585.e7, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30174297

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) tightly couple maintenance of the bone marrow (BM) reservoir, including undifferentiated long-term repopulating hematopoietic stem cells (LT-HSCs), with intensive daily production of mature leukocytes and blood replenishment. We found two daily peaks of BM HSPC activity that are initiated by onset of light and darkness providing this coupling. Both peaks follow transient elevation of BM norepinephrine and TNF secretion, which temporarily increase HSPC reactive oxygen species (ROS) levels. Light-induced norepinephrine and TNF secretion augments HSPC differentiation and increases vascular permeability to replenish the blood. In contrast, darkness-induced TNF increases melatonin secretion to drive renewal of HSPCs and LT-HSC potential through modulating surface CD150 and c-Kit expression, increasing COX-2/αSMA+ macrophages, diminishing vascular permeability, and reducing HSPC ROS levels. These findings reveal that light- and darkness-induced daily bursts of norepinephrine, TNF, and melatonin within the BM are essential for synchronized mature blood cell production and HSPC pool repopulation.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Oscuridad , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de la radiación , Luz , Animales , Células Cultivadas , Epigénesis Genética/genética , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Nature ; 532(7599): 323-8, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27074509

RESUMEN

Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.


Asunto(s)
Vasos Sanguíneos/citología , Vasos Sanguíneos/fisiología , Médula Ósea/irrigación sanguínea , Hematopoyesis , Animales , Antígenos Ly/metabolismo , Arterias/citología , Arterias/fisiología , Células de la Médula Ósea/citología , Diferenciación Celular , Movimiento Celular , Autorrenovación de las Células , Supervivencia Celular , Quimiocina CXCL12/metabolismo , Células Endoteliales/fisiología , Femenino , Movilización de Célula Madre Hematopoyética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Leucocitos/citología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Nestina/metabolismo , Pericitos/fisiología , Permeabilidad , Plasma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores CXCR4/metabolismo
15.
Ann N Y Acad Sci ; 1370(1): 65-81, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26928241

RESUMEN

The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/protease-activated receptor-1 (PAR1) signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR(+) LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NO(low) LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling that overcomes BM EPCR(+) LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production.


Asunto(s)
Antígenos CD/metabolismo , Células Madre Hematopoyéticas/metabolismo , Receptor PAR-1/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Animales , Receptor de Proteína C Endotelial , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Óxido Nítrico/metabolismo , Trombomodulina/metabolismo
16.
Nat Med ; 21(11): 1307-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26457757

RESUMEN

Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation related also control retention of endothelial protein C receptor-positive (EPCR(+)) LT-HSCs in the bone marrow and their recruitment to the blood via two pathways mediated by protease activated receptor 1 (PAR1). Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to EPCR shedding mediated by tumor necrosis factor-α-converting enzyme (TACE), enhanced CXCL12-CXCR4-induced motility and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with activated protein C (aPC) that retains EPCR(+) LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing integrin VLA4 affinity and adhesion. Inhibition of NO production by aPC-EPCR-PAR1 signaling reduces progenitor cell egress from the bone marrow, increases retention of bone marrow NO(low) EPCR(+) LT-HSCs and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR in controlling NO production to balance maintenance and recruitment of bone marrow EPCR(+) LT-HSCs, with potential clinical relevance for stem cell transplantation.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Óxido Nítrico/metabolismo , Proteína C/metabolismo , Receptor PAR-1/metabolismo , Receptores de Superficie Celular/metabolismo , Trombina/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animales , Médula Ósea/metabolismo , Adhesión Celular , Movimiento Celular , Quimiocina CXCL12/metabolismo , Receptor de Proteína C Endotelial , Células Madre Hematopoyéticas/citología , Integrina alfa4beta1/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores CXCR4/metabolismo , Transducción de Señal , Proteína de Unión al GTP cdc42/metabolismo
17.
Antioxid Redox Signal ; 21(11): 1605-19, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24762207

RESUMEN

SIGNIFICANCE: Blood forming, hematopoietic stem cells (HSCs) mostly reside in the bone marrow in a quiescent, nonmotile state via adhesion interactions with stromal cells and macrophages. Quiescent, proliferating, and differentiating stem cells have different metabolism, and accordingly different amounts of intracellular reactive oxygen species (ROS). Importantly, ROS is not just a byproduct of metabolism, but also plays a role in stem cell state and function. RECENT ADVANCES: ROS levels are dynamic and reversibly dictate enhanced cycling and myeloid bias in ROS(high) short-term repopulating stem cells, and ROS(low) quiescent long-term repopulating stem cells. Low levels of ROS, regulated by intrinsic factors such as cell respiration or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activity, or extrinsic factors such as stem cell factor or prostaglandin E2 are required for maintaining stem cell self-renewal. High ROS levels, due to stress and inflammation, induce stem cell differentiation and enhanced motility. CRITICAL ISSUES: Stem cells need to be protected from high ROS levels to avoid stem cell exhaustion, insufficient host immunity, and leukemic transformation that may occur during chronic inflammation. However, continuous low ROS production will lead to lack of stem cell function and opportunistic infections. Ultimately, balanced ROS levels are crucial for maintaining the small stem cell pool and host immunity, both in homeostasis and during stress situations. FUTURE DIRECTIONS: Deciphering the signaling pathway of ROS in HSC will provide a better understanding of ROS roles in switching HSC from quiescence to activation and vice versa, and will also shed light on the possible roles of ROS in leukemia initiation and development.


Asunto(s)
Células de la Médula Ósea , Médula Ósea/metabolismo , Diferenciación Celular , Movimiento Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nicho de Células Madre/fisiología , Animales , Ciclo Celular , Proliferación Celular , Neoplasias Hematológicas/metabolismo , Humanos , Inflamación/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
18.
Pharmaceuticals (Basel) ; 6(9): 1145-69, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24276423

RESUMEN

Hematopoietic stem cells (HSCs) are mostly retained in a quiescent non-motile mode in their bone marrow (BM) niches, shifting to a migratory cycling and differentiating state to replenish the blood with mature leukocytes on demand. The balance between the major chemo-attractants CXCL12, predominantly in the BM, and S1P, mainly in the blood, dynamically regulates HSC recruitment to the circulation versus their retention in the BM. During alarm situations, stress-signals induce a decrease in CXCL12 levels in the BM, while S1P levels are rapidly and transiently increased in the circulation, thus favoring mobilization of stem cells as part of host defense and repair mechanisms. Myeloid cytokines, including G-CSF, up-regulate S1P signaling in the BM via the PI3K pathway. Induced CXCL12 secretion from stromal cells via reactive oxygen species (ROS) generation and increased S1P1 expression and ROS signaling in HSCs, all facilitate mobilization. Bone turnover is also modulated by both CXCL12 and S1P, regulating the dynamic BM stromal microenvironment, osteoclasts and stem cell niches which all functionally express CXCL12 and S1P receptors. Overall, CXCL12 and S1P levels in the BM and circulation are synchronized to mutually control HSC motility, leukocyte production and osteoclast/osteoblast bone turnover during homeostasis and stress situations.

19.
Nat Immunol ; 13(11): 1072-82, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22983360

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are regulated by various bone marrow stromal cell types. Here we identified rare activated bone marrow monocytes and macrophages with high expression of α-smooth muscle actin (α-SMA) and the cyclooxygenase COX-2 that were adjacent to primitive HSPCs. These myeloid cells resisted radiation-induced cell death and further upregulated COX-2 expression under stress conditions. COX-2-derived prostaglandin E(2) (PGE(2)) prevented HSPC exhaustion by limiting the production of reactive oxygen species (ROS) via inhibition of the kinase Akt and higher stromal-cell expression of the chemokine CXCL12, which is essential for stem-cell quiescence. Our study identifies a previously unknown subset of α-SMA(+) activated monocytes and macrophages that maintain HSPCs and protect them from exhaustion during alarm situations.


Asunto(s)
Actinas/inmunología , Médula Ósea/inmunología , Células Madre Hematopoyéticas/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Actinas/genética , Animales , Médula Ósea/metabolismo , Médula Ósea/efectos de la radiación , Comunicación Celular/genética , Comunicación Celular/inmunología , Movimiento Celular/genética , Movimiento Celular/inmunología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Supervivencia Celular/efectos de la radiación , Quimiocina CXCL12/genética , Quimiocina CXCL12/inmunología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/inmunología , Dinoprostona/biosíntesis , Dinoprostona/inmunología , Rayos gamma , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/efectos de la radiación , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de la radiación , Macrófagos/citología , Macrófagos/efectos de la radiación , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/efectos de la radiación , Ratones , Monocitos/citología , Monocitos/efectos de la radiación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Transducción de Señal/efectos de la radiación
20.
Blood ; 120(9): 1843-55, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22645180

RESUMEN

Cytokine-induced expansion of hematopoietic stem and progenitor cells (HSPCs) is not fully understood. In the present study, we show that whereas steady-state hematopoiesis is normal in basic fibroblast growth factor (FGF-2)-knockout mice, parathyroid hormone stimulation and myeloablative treatments failed to induce normal HSPC proliferation and recovery. In vivo FGF-2 treatment expanded stromal cells, including perivascular Nestin(+) supportive stromal cells, which may facilitate HSPC expansion by increasing SCF and reducing CXCL12 via mir-31 up-regulation. FGF-2 predominantly expanded a heterogeneous population of undifferentiated HSPCs, preserving and increasing durable short- and long-term repopulation potential. Mechanistically, these effects were mediated by c-Kit receptor activation, STAT5 phosphorylation, and reduction of reactive oxygen species levels. Mice harboring defective c-Kit signaling exhibited abrogated HSPC expansion in response to FGF-2 treatment, which was accompanied by elevated reactive oxygen species levels. The results of the present study reveal a novel mechanism underlying FGF-2-mediated in vivo expansion of both HSPCs and their supportive stromal cells, which may be used to improve stem cell engraftment after clinical transplantation.


Asunto(s)
Proliferación Celular , Quimiocina CXCL12/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Células del Estroma/metabolismo , Animales , Secuencia de Bases , Trasplante de Médula Ósea , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL12/genética , Regulación hacia Abajo/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/farmacología , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Hormona Paratiroidea/farmacología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-kit/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT5/metabolismo , Células del Estroma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...