Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(5): 1302-1309, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38751629

RESUMEN

The B-cell lymphoma-2 (Bcl-2) family of proteins plays a vital role in tumorigenesis. Cancer cells utilize the expression of Bcl-2 to evade therapy and develop resistance. Bcl-2 overexpression also causes cancer cells to be more invasive and metastatic. About 80% of cancer deaths are due to metastases, and yet targeted therapies for metastatic cancers are scarce. We discovered a small molecule, BFC1103, which changes the conformation of Bcl-2 to convert the antiapoptotic protein to a proapoptotic protein. BFC1103-induced apoptosis is dependent on the expression levels of Bcl-2, with higher levels causing more apoptosis. BFC1103 suppressed the growth of breast cancer lung metastasis. BFC1103 has the potential for further optimization and development for clinical testing in metastatic cancers that express Bcl-2. This study demonstrates a new approach to target Bcl-2 using a small molecule, BFC1103, to suppress metastatic disease.

2.
Cancer Res Commun ; 4(3): 634-644, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38329389

RESUMEN

Cancer cells exploit the expression of anti-apoptotic protein Bcl-2 to evade apoptosis and develop resistance to therapeutics. High levels of Bcl-2 leads to sequestration of pro-apoptotic proteins causing the apoptotic machinery to halt. In this study, we report discovery of a small molecule, BFC1108 (5-chloro-N-(2-ethoxyphenyl)-2-[(4-methoxybenzyol)amino]benzamide), which targets Bcl-2 and converts it into a pro-apoptotic protein. The apoptotic effect of BFC1108 is not inhibited, but rather potentiated, by Bcl-2 overexpression. BFC1108 induces a conformational change in Bcl-2, resulting in the exposure of its BH3 domain both in vitro and in vivo. BFC1108 suppresses the growth of triple-negative breast cancer xenografts with high Bcl-2 expression and inhibits breast cancer lung metastasis. This study demonstrates a novel approach to targeting Bcl-2 using BFC1108, a small molecule Bcl-2 functional converter that effectively induces apoptosis in Bcl-2-expressing cancers. SIGNIFICANCE: We report the identification of a small molecule that exposes the Bcl-2 killer conformation and induces death in Bcl-2-expressing cancer cells. Selective targeting of Bcl-2 and elimination of cancer cells expressing Bcl-2 opens up new therapeutic avenues.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Unión Proteica
3.
ACS Pharmacol Transl Sci ; 6(7): 1028-1042, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37470014

RESUMEN

Triple-negative breast cancer (TNBC) remains a disease with a paucity of targeted treatment opportunities. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in a wide range of physiological processes, including the sensing of xenobiotics, immune function, development, and differentiation. Different small-molecule AhR ligands drive strikingly varied cellular and organismal responses. In certain cancers, AhR activation by select small molecules induces cell cycle arrest or apoptosis via activation of tumor-suppressive transcriptional programs. AhR is expressed in triple-negative breast cancers, presenting a tractable therapeutic opportunity. Here, we identify a novel ligand of the aryl hydrocarbon receptor that potently and selectively induces cell death in triple-negative breast cancer cells and TNBC stem cells via the AhR. Importantly, we found that this compound, Analog 523, exhibits minimal cytotoxicity against multiple normal human primary cells. Analog 523 represents a high-affinity AhR ligand with potential for future clinical translation as an anticancer agent.

4.
Biochem Pharmacol ; 215: 115706, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37506922

RESUMEN

Triple-negative breast cancer (TNBC) represents around 15% of the 2.26 million breast cancers diagnosed worldwide annually and has the worst outcome. Despite recent therapeutic advances, there remains a lack of targeted therapies for this breast cancer subtype. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with biological roles in regulating development, xenobiotic metabolism, cell cycle progression and cell death. AhR activation by select ligands can promote tumor suppression in multiple cancer types. AhR can negatively regulate the activity of different oncogenic signaling pathways and can directly upregulate tumor suppressor genes such as p27Kip1. To determine the role of AhR in TNBC, we generated AhR-deficient cancer cells and investigated the impact of AhR loss on TNBC cell growth phenotypes. We found that AhR-deficient MDA-MB-468 TNBC cells have increased proliferation and formed significantly more colonies compared to AhR expressing cells. These cells without AhR expression grew aggressively in vivo. To determine the molecular targets driving this phenotype, we performed transcriptomic profiling in AhR expressing and AhR knockout MDA-MB-468 cells and identified tyrosine receptor kinases, as well as other genes involved in proliferation, survival and clonogenicity that are repressed by AhR. In order to determine therapeutic targeting of AhR in TNBC, we investigated the anti-cancer effects of the novel AhR ligand 11-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (11-Cl-BBQ), which belongs to a class of high affinity, rapidly metabolized AhR ligands called benzimidazoisoquinolines (BBQs). 11-Cl-BBQ induced AhR-dependent cancer cell-selective growth inhibition and strongly inhibited colony formation in TNBC cells.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Línea Celular Tumoral , Proliferación Celular
5.
Biology (Basel) ; 12(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37106727

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in regulating a wide range of biological responses. A diverse array of xenobiotics and endogenous small molecules bind to the receptor and drive unique phenotypic responses. Due in part to its role in mediating toxic responses to environmental pollutants, AhR activation has not been traditionally viewed as a viable therapeutic approach. Nonetheless, the expression and activation of AhR can inhibit the proliferation, migration, and survival of cancer cells, and many clinically approved drugs transcriptionally activate AhR. Identification of novel select modulators of AhR-regulated transcription that promote tumor suppression is an active area of investigation. The development of AhR-targeted anticancer agents requires a thorough understanding of the molecular mechanisms driving tumor suppression. Here, we summarized the tumor-suppressive mechanisms regulated by AhR with an emphasis on the endogenous functions of the receptor in opposing carcinogenesis. In multiple different cancer models, the deletion of AhR promotes increased tumorigenesis, but a precise understanding of the molecular cues and the genetic targets of AhR involved in this process is lacking. The intent of this review was to synthesize the evidence supporting AhR-dependent tumor suppression and distill insights for development of AhR-targeted cancer therapeutics.

6.
FEBS J ; 290(8): 2064-2084, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36401795

RESUMEN

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and functions as a tumour suppressor in different cancer models. In the present study, we report detailed characterization of 11-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (11-Cl-BBQ) as a select modulator of AhR-regulated transcription (SMAhRT) with anti-cancer actions. Treatment of lung cancer cells with 11-Cl-BBQ induced potent and sustained AhR-dependent anti-proliferative effects by promoting G1 phase cell cycle arrest. Investigation of 11-Cl-BBQ-induced transcription in H460 cells with or without the AhR expression by RNA-sequencing revealed activation of p53 signalling. In addition, 11-Cl-BBQ suppressed multiple pathways involved in DNA replication and increased expression of cyclin-dependent kinase inhibitors, including p27Kip1 , in an AhR-dependent manner. CRISPR/Cas9 knockout of individual genes revealed the requirement for both p53 and p27Kip1 for the AhR-mediated anti-proliferative effects. Our results identify 11-Cl-BBQ as a potential lung cancer therapeutic, highlight the feasibility of targeting AhR and provide important mechanistic insights into AhR-mediated-anticancer actions.


Asunto(s)
Neoplasias Pulmonares , Receptores de Hidrocarburo de Aril , Humanos , Proteínas de Ciclo Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Pulmón/metabolismo , Neoplasias Pulmonares/genética , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , ARN , Proteína p53 Supresora de Tumor/genética
7.
Toxicol Appl Pharmacol ; 454: 116191, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926564

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates cell fate via activation of a diverse set of genes. There are conflicting reports describing the role of AhR in cancer. AhR-knockout mice do not develop tumors spontaneously, yet the AhR can act as a tumor suppressor in certain contexts. Loss of tumor suppression by p53 is common in human cancer. To investigate AhR function in the absence of p53, we generated mice lacking both AhR and p53. Mice deficient for AhR and p53 had shortened lifespan, increased tumorigenesis, and an altered tumor spectrum relative to control mice lacking only p53. In addition, knockout of both AhR and p53 resulted in reduced embryonic survival and neonatal fitness. We also examined the consequences of loss of AhR in p53-heterozygous mice and observed a significantly reduced lifespan and enhanced tumor burden. These findings reveal an important role for the AhR as a tumor suppressor in the absence of p53 signaling and support the development of anti-cancer therapeutics that would promote the tumor suppressive actions of the AhR.


Asunto(s)
Carcinogénesis , Receptores de Hidrocarburo de Aril , Proteína p53 Supresora de Tumor , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinogénesis/genética , Transformación Celular Neoplásica , Ligandos , Ratones , Ratones Noqueados , Receptores de Hidrocarburo de Aril/genética , Proteína p53 Supresora de Tumor/genética
8.
FEBS Lett ; 596(16): 2056-2071, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35735777

RESUMEN

p27Kip1 functions to coordinate cell cycle progression through the inhibition of cyclin-dependent kinase (CDK) complexes. p27Kip1 also exerts distinct activities beyond CDK-inhibition, including functioning as a transcriptional regulator. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with diverse biological roles. The regulatory inputs that control AhR-mediated transcriptional responses are an active area of investigation. AhR was previously established as a direct regulator of p27Kip1 transcription. Here, we report the physical interaction of AhR and p27Kip1 and show that p27Kip1 expression negatively regulates AhR-mediated transcription. p27Kip1 knockout cells display increased AhR nuclear localisation and significantly higher expression of AhR target genes. This work thus identifies new regulatory cross-talk between p27Kip1 and AhR.


Asunto(s)
Quinasas Ciclina-Dependientes , Receptores de Hidrocarburo de Aril , Proteínas de Ciclo Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Regulación de la Expresión Génica
9.
Front Toxicol ; 4: 846221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573279

RESUMEN

Understanding the mechanisms behind chemical susceptibility differences is key to protecting sensitive populations. However, elucidating gene-environment interactions (GxE) presents a daunting challenge. While mammalian models have proven useful, problems with scalability to an enormous chemical exposome and clinical translation faced by all models remain; therefore, alternatives are needed. Zebrafish (Danio rerio) have emerged as an excellent model for investigating GxE. This study used a combined bioinformatic and experimental approach to probe the mechanisms underlying chemical susceptibility differences in a genetically diverse zebrafish population. Starting from high-throughput screening (HTS) data, a genome-wide association study (GWAS) using embryonic fish exposed to 0.6 µM Abamectin revealed significantly different effects between individuals. A hypervariable region with two distinct alleles-one with G at the SNP locus (GG) and one with a T and the 16 bp deletion (TT)-associated with differential susceptibility was found. Sensitive fish had significantly lower sox7 expression. Due to their location and the observed expression differences, we hypothesized that these sequences differentially regulate sox7. A luciferase reporter gene assay was used to test if these sequences, alone, could lead to expression differences. The TT allele showed significantly lower expression than the GG allele in MCF-7 cells. To better understand the mechanism behind these expression differences, predicted transcription factor binding differences between individuals were compared in silico, and several putative binding differences were identified. EMSA was used to test for binding differences in whole embryo protein lysate to investigate these TF binding predictions. We confirmed that the GG sequence is bound to protein in zebrafish. Through a competition EMSA using an untagged oligo titration, we confirmed that the GG oligo had a higher binding affinity than the TT oligo, explaining the observed expression differences. This study identified differential susceptibility to chemical exposure in a genetically diverse population, then identified a plausible mechanism behind those differences from a genetic to molecular level. Thus, an HTS-compatible zebrafish model is valuable and adaptable in identifying GxE mechanisms behind susceptibility differences to chemical exposure.

10.
Drug Metab Dispos ; 49(8): 694-705, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34035125

RESUMEN

3,3'-Diindolylmethane (DIM), a major phytochemical derived from ingestion of cruciferous vegetables, is also a dietary supplement. In preclinical models, DIM is an effective cancer chemopreventive agent and has been studied in a number of clinical trials. Previous pharmacokinetic studies in preclinical and clinical models have not reported DIM metabolites in plasma or urine after oral dosing, and the pharmacological actions of DIM on target tissues is assumed to be solely via the parent compound. Seven subjects (6 males and 1 female) ranging from 26-65 years of age, on a cruciferous vegetable-restricted diet prior to and during the study, took 2 BioResponse DIM 150-mg capsules (45.3 mg DIM/capsule) every evening for one week with a final dose the morning of the first blood draw. A complete time course was performed with plasma and urine collected over 48 hours and analyzed by UPLC-MS/MS. In addition to parent DIM, two monohydroxylated metabolites and 1 dihydroxylated metabolite, along with their sulfate and glucuronide conjugates, were present in both plasma and urine. Results reported here are indicative of significant phase 1 and phase 2 metabolism and differ from previous pharmacokinetic studies in rodents and humans, which reported only parent DIM present after oral administration. 3-((1H-indole-3-yl)methyl)indolin-2-one, identified as one of the monohydroxylated products, exhibited greater potency and efficacy as an aryl hydrocarbon receptor agonist when tested in a xenobiotic response element-luciferase reporter assay using Hepa1 cells. In addition to competitive phytochemical-drug adverse reactions, additional metabolites may exhibit pharmacological activity highlighting the importance of further characterization of DIM metabolism in humans. SIGNIFICANCE STATEMENT: 3,3'-Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, is an effective cancer chemopreventive agent in preclinical models and a popular dietary supplement currently in clinical trials. Pharmacokinetic studies to date have found little or no metabolites of DIM in plasma or urine. In marked contrast, we demonstrate rapid appearance of mono- and dihydroxylated metabolites in human plasma and urine as well as their sulfate and glucuronide conjugates. The 3-((1H-indole-3-yl)methyl)indolin-2-one metabolite exhibited significant aryl hydrocarbon receptor agonist activity, emphasizing the need for further characterization of the pharmacological properties of DIM metabolites.


Asunto(s)
Indoles , Administración Oral , Anticarcinógenos/sangre , Anticarcinógenos/farmacocinética , Anticarcinógenos/orina , Cápsulas , Suplementos Dietéticos , Desarrollo de Medicamentos , Vías de Eliminación de Fármacos , Femenino , Humanos , Inactivación Metabólica/fisiología , Indoles/sangre , Indoles/farmacocinética , Indoles/orina , Masculino , Persona de Mediana Edad , Fitoquímicos/sangre , Fitoquímicos/farmacocinética , Fitoquímicos/orina
11.
Biology (Basel) ; 10(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804830

RESUMEN

In order to develop new cancer therapeutics, rapid, reliable, and relevant biological models are required to screen and validate drug candidates for both efficacy and safety. In recent years, the zebrafish (Danio rerio) has emerged as an excellent model organism suited for these goals. Larval fish or immunocompromised adult fish are used to engraft human cancer cells and serve as a platform for screening potential drug candidates. With zebrafish sharing ~80% of disease-related orthologous genes with humans, they provide a low cost, high-throughput alternative to mouse xenografts that is relevant to human biology. In this review, we provide background on the methods and utility of zebrafish xenograft models in cancer research.

12.
Pharmacol Ther ; 225: 107837, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33753133

RESUMEN

Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.


Asunto(s)
Vapeo , Química , Humanos , Toxicología , Vapeo/efectos adversos
13.
ACS Sens ; 5(2): 377-384, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31942801

RESUMEN

Several bottlenecks in the design of current sensor technologies for small noncoding RNA must be addressed. The small size of the sensors and the large number of other nucleotides that may have sequence similarity makes selectivity a real concern. Many of the current sensors have one strand with an exposed region called a toehold. The toehold serves as a place for the analyte nucleic acid strand to bind and initiate competitive displacement of sensors' secondary strands. Since the toehold region is not protected, any endogenous oligonucleotide sequences that are similar or only different by a few nucleic acids will interact with the toehold and cause false signals. To address sensor selectivity, we investigated how the toehold location in the sensor impacts the sensitivity and selectivity for the analyte of interest. We will discuss the differences in sensitivity and selectivity for a miR-146a-5p biosensor in the presence of different naturally occurring mismatch sequences. We found that altering the toehold location lowered the rate of the false signal from off-analyte microRNA by upward of 20 percentage points. Detection limits as low as 56 pM were observed when the sensor concentration was 5 nM. The findings herein are broadly applicable to other small and large RNAs as well as other types of sensing platforms.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , MicroARNs/genética , Humanos
14.
Sci Rep ; 10(1): 727, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959767

RESUMEN

Osteosarcoma (OS) is the most common bone cancer in children and young adults. Solid tumors are characterized by intratumoral hypoxia, and hypoxic cells are associated with the transformation to aggressive phenotype and metastasis. The proteome needed to support an aggressive osteosarcoma cell phenotype remains largely undefined. To link metastatic propensity to a hypoxia-induced proteotype, we compared the protein profiles of two isogenic canine OS cell lines, POS (low metastatic) and HMPOS (highly metastatic), under normoxia and hypoxia. Label-free shotgun proteomics was applied to comprehensively characterize the hypoxia-responsive proteome profiles in the OS cell phenotypes. Hypothesis-driven parallel reaction monitoring was used to validate the differential proteins observed in the shotgun data and to monitor proteins of which we expected to exhibit hypoxia responsiveness, but which were absent in the label-free shotgun data. We established a "distance" score (|zHMPOS - zPOS|), and "sensitivity" score (|zHypoxia - zNormoxia) to quantitatively evaluate the proteome shifts exhibited by OS cells in response to hypoxia. Evaluation of the sensitivity scores for the proteome shifts observed and principal component analysis of the hypoxia-responsive proteins indicated that both cell types acquire a proteome that supports a Warburg phenotype with enhanced cell migration and proliferation characteristics. Cell migration and glucose uptake assays combined with protein function inhibitor studies provided further support that hypoxia-driven adaption of pathways associated with glycolytic metabolism, collagen biosynthesis and remodeling, redox regulation and immunomodulatory proteins typify a proteotype associated with an aggressive cancer cell phenotype. Our findings further suggest that proteins involved in collagen remodeling and immune editing may warrant further evaluation as potential targets for anti-metastatic treatment strategies in osteosarcoma.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Hipoxia/metabolismo , Hipoxia/patología , Metástasis de la Neoplasia/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Proteoma/metabolismo , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/inmunología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Colágeno/metabolismo , Perros , Hipoxia/genética , Metástasis de la Neoplasia/inmunología , Osteosarcoma/genética , Osteosarcoma/inmunología , Proteómica
15.
Front Immunol ; 11: 606441, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552063

RESUMEN

The diet represents one environmental risk factor controlling the progression of type 1 diabetes (T1D) in genetically susceptible individuals. Consequently, understanding which specific nutritional components promote or prevent the development of disease could be used to make dietary recommendations in prediabetic individuals. In the current study, we hypothesized that the immunoregulatory phytochemcial, indole-3-carbinol (I3C) which is found in cruciferous vegetables, will regulate the progression of T1D in nonobese diabetic (NOD) mice. During digestion, I3C is metabolized into ligands for the aryl hydrocarbon receptor (AhR), a transcription factor that when systemically activated prevents T1D. In NOD mice, an I3C-supplemented diet led to strong AhR activation in the small intestine but minimal systemic AhR activity. In the absence of this systemic response, the dietary intervention led to exacerbated insulitis. Consistent with the compartmentalization of AhR activation, dietary I3C did not alter T helper cell differentiation in the spleen or pancreatic draining lymph nodes. Instead, dietary I3C increased the percentage of CD4+RORγt+Foxp3- (Th17 cells) in the lamina propria, intraepithelial layer, and Peyer's patches of the small intestine. The immune modulation in the gut was accompanied by alterations to the intestinal microbiome, with changes in bacterial communities observed within one week of I3C supplementation. A transkingdom network was generated to predict host-microbe interactions that were influenced by dietary I3C. Within the phylum Firmicutes, several genera (Intestinimonas, Ruminiclostridium 9, and unclassified Lachnospiraceae) were negatively regulated by I3C. Using AhR knockout mice, we validated that Intestinimonas is negatively regulated by AhR. I3C-mediated microbial dysbiosis was linked to increases in CD25high Th17 cells. Collectively, these data demonstrate that site of AhR activation and subsequent interactions with the host microbiome are important considerations in developing AhR-targeted interventions for T1D.


Asunto(s)
Bacterias/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Diabetes Mellitus Tipo 1/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Indoles/toxicidad , Intestino Delgado/efectos de los fármacos , Receptores de Hidrocarburo de Aril/agonistas , Células Th17/efectos de los fármacos , Animales , Bacterias/inmunología , Bacterias/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiología , Exposición Dietética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disbiosis , Interacciones Huésped-Patógeno , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Ratones Endogámicos NOD , Ratones Noqueados , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
16.
Toxicol Sci ; 161(2): 310-320, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040756

RESUMEN

FICZ and TCDD, two high-affinity AhR ligands, are reported to have opposite effects on T cell differentiation with TCDD inducing regulatory T cells and FICZ inducing Th17 cells. This dichotomy has been attributed to ligand-intrinsic differences in AhR activation, although differences in sensitivity to metabolism complicate the issue. TCDD is resistant to AhR-induced metabolism and produces sustained AhR activation following a single dose in the µg/kg range, whereas FICZ is rapidly metabolized and AhR activation is transient. Nonetheless, prior studies comparing FICZ with TCDD have generally used the same 10-50 µg/kg dose range, and thus the two ligands would not equivalently activate AhR. We hypothesized that high-affinity AhR ligands can promote CD4+ T cell differentiation into both Th17 cells and Tregs, with fate depending on the extent and duration of AhR activation. We compared the immunosuppressive effects of TCDD and FICZ, along with two other rapidly metabolized ligands (ITE and 11-Cl-BBQ) in an acute alloresponse mouse model. The dose and timing of administration of each ligand was optimized for TCDD-equivalent Cyp1a1 induction. When optimized, all of the ligands suppressed the alloresponse in conjunction with the induction of Foxp3- Tr1 cells on day 2 and the expansion of natural Foxp3+ Tregs on day 10. In contrast, a low dose of FICZ induced transient expression of Cyp1a1 and did not induce Tregs or suppress the alloresponse but enhanced IL-17 production. Interestingly, low doses of the other ligands, including TCDD, also increased IL-17 production on day 10. These findings support the conclusion that the dose and the duration of AhR activation by high-affinity AhR ligands are the primary factors driving the fate of T cell differentiation.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Carbazoles/toxicidad , Diferenciación Celular/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inmunidad Celular/efectos de los fármacos , Ligandos , Ratones Endogámicos C57BL , Factores de Tiempo
17.
Eur J Immunol ; 47(11): 1989-2001, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28833046

RESUMEN

Activation of the aryl hydrocarbon receptor (AhR) by immunosuppressive ligands promotes the development of regulatory T (Treg) cells. Although AhR-induced Foxp3+ Treg cells have been well studied, much less is known about the development and fate of AhR-induced Type 1 Treg (AhR-Tr1) cells. In the current study, we identified the unique transcriptional and functional changes in murine CD4+ T cells that accompany the differentiation of AhR-Tr1 cells during the CD4+ T-cell-dependent phase of an allospecific cytotoxic T lymphocyte (allo-CTL) response. AhR activation increased the expression of genes involved in T-cell activation, immune regulation and chemotaxis, as well as a global downregulation of genes involved in cell cycling.  Increased IL-2 production was responsible for the early AhR-Tr1 activation phenotype previously characterized as CD25+ CTLA4+ GITR+ on day 2. The AhR-Tr1 phenotype was further defined by the coexpression of the immunoregulatory receptors Lag3 and Tim3 and non-overlapping expression of CCR4 and CCR9. Consistent with the increased expression of CCR9, real-time imaging showed enhanced migration of AhR-Tr1 cells to the lamina propria of the small intestine and colon. The discovery of mucosal imprinting of AhR-Tr1 cells provides an additional mechanism by which therapeutic AhR ligands can control immunopathology.


Asunto(s)
Diferenciación Celular/inmunología , Interleucina-2/biosíntesis , Receptores de Hidrocarburo de Aril/inmunología , Linfocitos T Reguladores/inmunología , Aloinjertos , Animales , Linfocitos T CD4-Positivos/inmunología , Movimiento Celular/inmunología , Mucosa Intestinal/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
18.
J Immunol ; 196(1): 264-73, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26573835

RESUMEN

Aryl hydrocarbon receptor (AhR) activation by high-affinity ligands mediates immunosuppression in association with increased regulatory T cells (Tregs), making this transcription factor an attractive therapeutic target for autoimmune diseases. We recently discovered 10-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (10-Cl-BBQ), a nanomolar affinity AhR ligand with immunosuppressive activity and favorable pharmacologic properties. In this study, we tested the consequences of AhR activation in the NOD model. Oral 10-Cl-BBQ treatment prevented islet infiltration without clinical toxicity, whereas AhR-deficient NOD mice were not protected. Suppression of insulitis was associated with an increased frequency, but not total number, of Foxp3(+) Tregs in the pancreas and pancreatic lymph nodes. The requirement for Foxp3(+) cells in AhR-induced suppression of insulitis was tested using NOD.Foxp3(DTR) mice, which show extensive islet infiltration upon treatment with diphtheria toxin. AhR activation prevented the development of insulitis caused by the depletion of Foxp3(+) cells, demonstrating that Foxp3(+) cells are not required for AhR-mediated suppression and furthermore that the AhR pathway is able to compensate for the absence of Foxp3(+) Tregs, countering current dogma. Concurrently, the development of disease-associated CD4(+)Nrp1(+)Foxp3(-)RORγt(+) cells was inhibited by AhR activation. Taken together, 10-Cl-BBQ is an effective, nontoxic AhR ligand for the intervention of immune-mediated diseases that functions independently of Foxp3(+) Tregs to suppress pathogenic T cell development.


Asunto(s)
Bencimidazoles/administración & dosificación , Diabetes Mellitus Tipo 1/prevención & control , Inmunosupresores/administración & dosificación , Inflamación/prevención & control , Islotes Pancreáticos/efectos de los fármacos , Isoquinolinas/administración & dosificación , Receptores de Hidrocarburo de Aril/agonistas , Células TH1/inmunología , Células Th17/inmunología , Animales , Bencimidazoles/farmacología , Activación Enzimática , Factores de Transcripción Forkhead/metabolismo , Inmunosupresores/farmacología , Islotes Pancreáticos/inmunología , Isoquinolinas/farmacología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD
19.
Biology (Basel) ; 3(4): 645-69, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25329374

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates the expression of a diverse group of genes. Exogenous AHR ligands include the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a potent agonist, and the synthetic AHR antagonist N-2-(1H-indol-3yl)ethyl)-9-isopropyl-2- (5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351). As no experimentally determined structure of the ligand binding domain exists, homology models have been utilized for virtual ligand screening (VLS) to search for novel ligands. Here, we have developed an "agonist-optimized" homology model of the human AHR ligand binding domain, and this model aided in the discovery of two human AHR agonists by VLS. In addition, we performed molecular dynamics simulations of an agonist TCDD-bound and antagonist GNF351-bound version of this model in order to gain insights into the mechanics of the AHR ligand-binding pocket. These simulations identified residues 307-329 as a flexible segment of the AHR ligand pocket that adopts discrete conformations upon agonist or antagonist binding. This flexible segment of the AHR may act as a structural switch that determines the agonist or antagonist activity of a given AHR ligand.

20.
Aquat Toxicol ; 154: 71-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24865613

RESUMEN

Firemaster 550 (FM550) is an additive flame retardant mixture used within polyurethane foam and is increasingly found in house dust and the environment due to leaching. Despite the widespread use of FM550, very few studies have investigated the potential toxicity of its ingredients during early vertebrate development. In the current study, we sought to specifically investigate mono-substituted isopropylated triaryl phosphate (mITP), a component comprising approximately 32% of FM550, which has been shown to cause cardiotoxicity during zebrafish embryogenesis. Previous research showed that developmental defects are rescued using an aryl hydrocarbon receptor (AHR) antagonist (CH223191), suggesting that mITP-induced toxicity was AHR-dependent. As zebrafish have three known AHR isoforms, we used a functional AHR2 knockout line along with AHR1A- and AHR1B-specific morpholinos to determine which AHR isoform, if any, mediates mITP-induced cardiotoxicity. As in silico structural homology modeling predicted that mITP may bind favorably to both AHR2 and AHR1B isoforms, we evaluated AHR involvement in vivo by measuring CYP1A mRNA and protein expression following exposure to mITP in the presence or absence of CH223191 or AHR-specific morpholinos. Based on these studies, we found that mITP interacts with both AHR2 and AHR1B isoforms to induce CYP1A expression. However, while CH223191 blocked mITP-induced CYP1A induction and cardiotoxicity, knockdown of all three AHR isoforms failed to block mITP-induced cardiotoxicity in the absence of detectable CYP1A induction. Overall, these results suggest that, while mITP is an AHR agonist, mITP causes AHR-independent cardiotoxicity through a pathway that is also antagonized by CH223191.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Retardadores de Llama/toxicidad , Corazón/efectos de los fármacos , Organofosfatos/toxicidad , Bifenilos Polibrominados/toxicidad , Receptores de Hidrocarburo de Aril/agonistas , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Animales , Compuestos Azo/farmacología , Cardiotoxinas/toxicidad , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Embrión no Mamífero/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Pirazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...