Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 84: 101933, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583571

RESUMEN

OBJECTIVE: Alström Syndrome (AS), caused by biallelic ALMS1 mutations, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and fatty liver. Prior studies suggest that hyperphagia is accounted for by loss of ALMS1 function in hypothalamic neurones, whereas disproportionate metabolic complications may be due to impaired adipose tissue expandability. We tested this by comparing the metabolic effects of global and mesenchymal stem cell (MSC)-specific Alms1 knockout. METHODS: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα-Cre driver was used to abrogate Alms1 function selectively in MSCs and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα+ Alms1-KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. RESULTS: Assessed on 45% fat diet to promote adipose expansion, global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα-cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfrα expression. CONCLUSIONS: Mesenchymal deletion of Alms1 recapitulates metabolic features of AS, including fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. Hyperphagia in females may depend on Alms1 deficiency in oligodendrocyte precursor cells rather than neurones. AS should be regarded as a forme fruste of lipodystrophy.


Asunto(s)
Síndrome de Alstrom , Células Madre Mesenquimatosas , Ratones Noqueados , Animales , Ratones , Masculino , Femenino , Células Madre Mesenquimatosas/metabolismo , Síndrome de Alstrom/metabolismo , Síndrome de Alstrom/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Resistencia a la Insulina , Hígado Graso/metabolismo , Hígado Graso/genética , Obesidad/metabolismo , Obesidad/genética , Hiperfagia/metabolismo , Hiperfagia/genética , Tejido Adiposo/metabolismo , Ratones Endogámicos C57BL , Composición Corporal
2.
Cancer Res ; 84(5): 648-649, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38437636

RESUMEN

Cancer aggressiveness has been linked with obesity, and studies have shown that adipose tissue can enhance cancer progression. In this issue of Cancer Research, Hosni and colleagues discover a paracrine mechanism mediated by adipocyte precursor cells through which urothelial carcinomas become resistant to erdafitinib, a recently approved therapy inhibiting fibroblast growth factor receptors (FGFR). They identified neuregulin 1 (NRG1) secreted by adipocyte precursor cells as an activator of HER3 signaling that enables resistance. The NRG1-mediated FGFR inhibitor resistance was amenable to intervention with pertuzumab, an antibody blocking the NRG1/HER3 axis. To investigate the nature of the resistance-associated NRG1-expressing cells in human patients, the authors analyzed published single-cell RNA sequencing data and observed that such cells appear in a cluster assigned as inflammatory cancer-associated fibroblasts (iCAF). Notably, the gene signature corresponding to these CAFs is highly similar to that shared by adipose stromal cells (ASC) in fat tissue and fibro-adipogenic progenitors (FAP) in skeletal muscle of cancer-free individuals. Because fibroblasts with the ASC/FAP signature are enriched in various carcinomas, it is possible that the paracrine signaling conferred by NRG1 is a pan-cancer mechanism of FGFR inhibitor resistance and tumor aggressiveness. See related article by Hosni et al., p. 725.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Células Transicionales , Humanos , Adipocitos , Tejido Adiposo , Células del Estroma
3.
Artículo en Inglés | MEDLINE | ID: mdl-38466528

RESUMEN

We identified a progenitor cell population highly enriched in samples from invasive and chemo-resistant carcinomas, characterized by a well-defined multigene signature including APOD, DCN, and LUM. This cell population has previously been labeled as consisting of inflammatory cancer-associated fibroblasts (iCAFs). The same signature characterizes naturally occurring fibro-adipogenic progenitors (FAPs) as well as stromal cells abundant in normal adipose tissue. Our analysis of human gene expression databases provides evidence that adipose stromal cells (ASCs) are recruited by tumors and undergo differentiation into CAFs during cancer progression to invasive and chemotherapy-resistant stages.

4.
Aging Cell ; 23(6): e14138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38475941

RESUMEN

It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.


Asunto(s)
Envejecimiento , Senescencia Celular , Células Endoteliales , Ratones Noqueados , Telomerasa , Telómero , Animales , Telomerasa/metabolismo , Telomerasa/genética , Senescencia Celular/genética , Envejecimiento/metabolismo , Ratones , Células Endoteliales/metabolismo , Telómero/metabolismo , Telómero/genética , Mitocondrias/metabolismo
5.
Diabetes ; 73(5): 701-712, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38320268

RESUMEN

Bile acids (BAs) are pleiotropic regulators of metabolism. Elevated levels of hepatic and circulating BAs improve energy metabolism in peripheral organs, but the precise mechanisms underlying the metabolic benefits and harm still need to be fully understood. In the current study, we identified orosomucoid 2 (ORM2) as a liver-secreted hormone (i.e., hepatokine) induced by BAs and investigated its role in BA-induced metabolic improvements in mouse models of diet-induced obesity. Contrary to our expectation, under a high-fat diet (HFD), our Orm2 knockout (Orm2-KO) exhibited a lean phenotype compared with C57BL/6J control, partly due to the increased energy expenditure. However, when challenged with a HFD supplemented with cholic acid, Orm2-KO eliminated the antiobesity effect of BAs, indicating that ORM2 governs BA-induced metabolic improvements. Moreover, hepatic ORM2 overexpression partially replicated BA effects by enhancing insulin sensitivity. Mechanistically, ORM2 suppressed interferon-γ/STAT1 activities in inguinal white adipose tissue depots, forming the basis for anti-inflammatory effects of BAs and improving glucose homeostasis. In conclusion, our study provides new insights into the molecular mechanisms of BA-induced liver-adipose cross talk through ORM2 induction.


Asunto(s)
Ácidos y Sales Biliares , Orosomucoide , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Orosomucoide/metabolismo , Orosomucoide/farmacología , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos
6.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873427

RESUMEN

Background: Alström Syndrome (AS), a multi-system disease caused by mutations in the ALMS1 gene, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and hepatosteatosis. How loss of ALMS1 causes this phenotype is poorly understood, but prior studies have circumstancially implicated impaired adipose tissue expandability. We set out to test this by comparing the metabolic effects of selective Alms1 knockout in mesenchymal cells including preadipocytes to those of global Alms1 knockout. Methods: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα -Cre driver was used to abrogate Alms1 function selectively in mesenchymal stem cells (MSCs) and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα + Alms1 -KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. Results: Global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα - cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfr α expression. Conclusions: Mesenchymal deletion of Alms1 recapitulates the metabolic features of AS, including severe fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. AS should be regarded as a forme fruste of lipodystrophy. Therapies should prioritise targeting positive energy balance.

7.
Nat Rev Urol ; 20(10): 579-596, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37198266

RESUMEN

Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.


Asunto(s)
Tejido Adiposo , Neoplasias de la Próstata , Masculino , Humanos , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Adipocitos/metabolismo , Adipocitos/patología , Obesidad/complicaciones , Obesidad/metabolismo , Neoplasias de la Próstata/patología , Neovascularización Patológica
9.
Cells ; 13(1)2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38201269

RESUMEN

Glucagon-like peptide-1 receptor agonists (GLP1RA) have been transformative for patients and clinicians in treating type-2 diabetes and obesity. Drugs of this class, the bioavailability of which is continuously improving, enable weight loss and control blood glucose with minimal unwanted side effects. Since adopting GLP1RA for treating metabolic diseases, animal and clinical studies have revealed their beneficial effects on several other pathologies, including cardiovascular diseases, neurodegeneration, kidney disease, and cancer. A notable commonality between these diseases is their association with older age. Clinical trials and preclinical data suggest that GLP1RA may improve outcomes in these aging-related diseases. Some of the benefits of GLP1RA may be indirect due to their effects on obesity and glucose metabolism. However, there is building evidence that GLP1RA may also act directly on multiple organs implicated in aging-related pathology. This review aims to compile the studies reporting the effects of GLP1RA on aging-related diseases and discuss potential underlying mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Disponibilidad Biológica , Obesidad/tratamiento farmacológico , Envejecimiento , Glucemia
10.
Biology (Basel) ; 11(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36552277

RESUMEN

Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis. We propose a model unifying the fundamental processes underlying most age-associated cardiovascular pathologies. According to this model, cell aging, leading to cell senescence, is responsible for tissue changes leading to age-related cardiovascular disease. This process, occurring due to telomerase inactivation and telomere attrition, affects all components of the cardiovascular system, including cardiomyocytes, vascular endothelial cells, smooth muscle cells, cardiac fibroblasts, and immune cells. The unified model offers insights into the relationship between upstream risk factors and downstream clinical outcomes and explains why interventions aimed at either of these components have limited success. Potential therapeutic approaches are considered based on this model. Because telomerase activity can prevent and reverse cell senescence, telomerase gene therapy is discussed as a promising intervention. Telomerase gene therapy and similar systems interventions based on the unified model are expected to be transformational in cardiovascular medicine.

11.
Cell Rep Med ; 3(11): 100813, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384099

RESUMEN

Mechanisms underlying anti-diabetic effects of GLP1 analogs remain incompletely understood. We observed that in prediabetic humans exenatide treatment acutely induces interleukin-6 (IL-6) secretion by monocytes and IL-6 in systemic circulation. We hypothesized that GLP1 analogs signal through IL-6 in adipose tissue (AT) and used the mouse model to test if IL-6 receptor (IL-6R) signaling underlies the effects of the GLP1-IL-6 axis. We show that liraglutide transiently increases IL-6 in mouse circulation and IL-6R signaling in AT. Metronomic liraglutide treatment resulted in AT browning and thermogenesis linked with STAT3 activation. IL-6-blocking antibody treatment inhibited STAT3 activation in AT and suppressed liraglutide-induced increase in thermogenesis and glucose utilization. We show that adipose IL-6R knockout mice still display liraglutide-induced weight loss but lack thermogenic adipocyte browning and metabolism activation. We conclude that the anti-diabetic effects of GLP1 analogs are mediated by transient upregulation of IL-6, which activates canonical IL-6R signaling and thermogenesis.


Asunto(s)
Adipocitos , Péptido 1 Similar al Glucagón , Interleucina-6 , Liraglutida , Termogénesis , Animales , Humanos , Ratones , Adipocitos/metabolismo , Interleucina-6/metabolismo , Liraglutida/farmacología , Transducción de Señal , Péptido 1 Similar al Glucagón/análogos & derivados
12.
Cell Rep ; 40(11): 111362, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103820

RESUMEN

Obesity is associated with increased cancer incidence and progression. However, the relationship between adiposity and cancer remains poorly understood at the mechanistic level. Here, we report that adipocytes from tumor-invasive mammary fat undergo de-differentiation to fibroblast-like precursor cells during tumor progression and integrate into the tumor microenvironment. Single-cell sequencing reveals that these de-differentiated adipocytes lose their original identities and transform into multiple cell types, including myofibroblast- and macrophage-like cells, with their characteristic features involved in immune response, inflammation, and extracellular matrix remodeling. The de-differentiated cells are metabolically distinct from tumor-associated fibroblasts but exhibit comparable effects on tumor cell proliferation. Inducing de-differentiation by Xbp1s overexpression promotes tumor progression despite lower adiposity. In contrast, promoting lipid-storage capacity in adipocytes through MitoNEET overexpression curbs tumor growth despite greater adiposity. Collectively, the metabolic interplay between tumor cells and adipocytes induces adipocyte mesenchymal transition and contributes to reconfigure the stroma into a more tumor-friendly microenvironment.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Adipocitos/metabolismo , Animales , Neoplasias de la Mama/patología , Matriz Extracelular/metabolismo , Femenino , Humanos , Neoplasias Mamarias Animales/patología , Microambiente Tumoral
13.
Oncogene ; 41(41): 4633-4644, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088505

RESUMEN

Obesity is associated with increased prostate cancer (PCa) progression and higher mortality, however, the mechanism(s) remain still unclear. Here, we investigated signaling by the ASC-secreted chemokine CXCL12 in a mouse allograft model of PCa and in HiMyc mice in the context of diet-induced obesity. Treatment of mice with CXCR4 antagonist inhibited CXCL12-induced signaling pathways, tumor growth and EMT in HMVP2 allograft tumors. Similar results were obtained following prostate epithelium-specific deletion of CXCR4 in HiMyc mice. We also show that CXCR4 signaling regulates expression of JMJD2A histone demethylase and histone methylation which is modulated by AMD3100. Importantly, treatment with a CXCR7 antagonist also inhibited allograft tumor growth and EMT. The current results demonstrate that both CXCR4 and CXCR7 play an important role in cancer progression and establish CXCL12 signaling pathways, activated in obesity, as potential targets for PCa intervention. In addition, other factors secreted by ASCs, may also contribute to cancer aggressiveness in obesity.


Asunto(s)
Neoplasias de la Próstata , Receptores CXCR , Animales , Línea Celular Tumoral , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Transición Epitelial-Mesenquimal , Histona Demetilasas/metabolismo , Histonas , Masculino , Ratones , Obesidad/genética , Próstata/patología , Neoplasias de la Próstata/patología , Receptores CXCR4/metabolismo
14.
Immunometabolism (Cobham) ; 4(3): e00001, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35991116

RESUMEN

Dysregulation of lipid deposition into and mobilization from white adipose tissue (WAT) underlies various diseases. Long-chain fatty acids (LCFA) and cholesterol trafficking in and out of adipocytes is a process relying on transporters shuttling lipids from the plasma membrane (PM) to lipid droplets (LD). CD36 is the fatty acid translocase (FAT) that transports LCFA and cholesterol across the PM. Interactions of CD36 with proteins PHB1, ANX2, and CAV1 mediate intercellular lipid transport between adipocytes, hematopoietic, epithelial, and endothelial cells. Intracellularly, the FAT complex has been found to regulate LCFA trafficking between the PM and LD. This process is regulated by CD36 glycosylation and S-acylation, as well as by post-translational modifications of PHB1 and ANX2, which determine both protein-protein interactions and the cellular localization of the complex. Changes in extracellular and intracellular LCFA levels have been found to induce the post-translational modifications and the function of the FAT complex in lipid uptake and mobilization. The role of the CD36/PHB1/ANX2 complex may span beyond lipid trafficking. The requirement of PHB1 for mitochondrial oxidative metabolism in brown adipocytes has been revealed. Cancer cells which take advantage of lipids mobilized by adipocytes and oxidized in leukocytes are indirectly affected by the function of FAT complex in other tissues. The direct importance of CD36 interaction with PHB1/and ANX2 in cancer cells remains to be established. This review highlights the multifaceted roles of the FAT complex in systemic lipid trafficking and discuss it as a potential target in metabolic disease and cancer.

15.
Stem Cell Res Ther ; 13(1): 405, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35932084

RESUMEN

BACKGROUND: During aging, perturbation of muscle progenitor cell (MPC) constituents leads to progressive loss of muscle mass and accumulation of adipose and fibrotic tissue. Mesenchymal stem cells (MSCs) give rise to adipocytes and fibroblasts that accumulate in injured and pathological skeletal muscle through constitutive activation of platelet-derived growth factor receptors (PDGFRs). Although the role of the PDGFRα has been widely explored, there is a paucity of evidence demonstrating the role of PDGFRß in aged skeletal muscle. METHODS: In this study, we investigated the role of PDGFRß lineage cells in skeletal muscle during aging by using Cre/loxP lineage tracing technology. The PDGFR-Cre mice were crossed with global double-fluorescent Cre reporter mice (mTmG) that indelibly marks PDGFRß lineage cells. Those cells were analyzed and compared at different ages in the skeletal muscle of the mice. RESULTS: Our results demonstrated that PDGFRß lineage cells isolated from the muscles of young mice are MPC-like cells that exhibited satellite cell morphology, expressed Pax7, and undergo myogenic differentiation producing myosin heavy chain expressing myotubes. Conversely, the PDGFRß lineage cells isolated from muscles of old mice displayed MSC morphology with a reduced myogenic differentiation potential while expressing adipogenic and fibrotic differentiation markers. PDGFRß lineage cells also gave rise to newly regenerated muscle fibers in young mice after muscle injury, but their muscle regenerative process is reduced in old mice. CONCLUSIONS: Our data suggest that PDGFRß lineage cells function as MPCs in young mice, while the same PDGFRß lineage cells from old mice undergo a fate switch participating in adipose and fibrotic tissue infiltration in aged muscle. The inhibition of fate-switching in PDGFRß lineage cells may represent a potential approach to prevent fibrosis and fatty infiltration in skeletal muscle during the aging process.


Asunto(s)
Músculo Esquelético , Células Satélite del Músculo Esquelético , Adipogénesis/genética , Envejecimiento/fisiología , Animales , Diferenciación Celular , Fibrosis , Ratones , Desarrollo de Músculos
16.
Cancer Metastasis Rev ; 41(3): 461-462, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35896865
17.
Mol Metab ; 63: 101544, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835372

RESUMEN

OBJECTIVE: Brown adipogenesis and thermogenesis in brown and beige adipose tissue (AT) involve vascular remodeling and sympathetic neuronal guidance. Here, we investigated the molecular mechanism coordinating these processes. METHODS: We used mouse models to identify the molecular target of a peptide CPATAERPC homing to the endothelium of brown and beige AT. RESULTS: We demonstrate that CPATAERPC mimics nerve growth factor (NGF) and identify a low molecular weight isoform of NGF receptor, TrkA, as the CPATAERPC cell surface target. We show that the expression of truncated endothelial TrkA is selective for brown and subcutaneous AT. Analysis of mice with endothelium-specific TrkA knockout revealed the role of TrkA in neuro-vascular coordination supporting the thermogenic function of brown adipocytes. A hunter-killer peptide D-BAT, composed of CPATAERPC and a pro-apoptotic domain, induced cell death in the endothelium and adipocytes. This resulted in thermogenesis impairment, and predisposed mice to obesity and glucose intolerance. We also tested if this treatment can inhibit the tumor recruitment of lipids mobilized from adipocytes from adjacent AT. Indeed, in a mouse model of breast cancer D-BAT suppressed tumor-associated AT lipolysis, which resulted in reduced fatty acid utilization by cancer cells. CONCLUSION: Our study demonstrates that TrkA signaling in the endothelium supports neuro-vascular coordination enabling beige adipogenesis.


Asunto(s)
Tejido Adiposo Pardo , Factor de Crecimiento Nervioso , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Endotelio , Ratones , Factor de Crecimiento Nervioso/metabolismo , Termogénesis
19.
Elife ; 112022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35635747

RESUMEN

DNA Methyltransferase 3 A (DNMT3A) is an important facilitator of differentiation of both embryonic and hematopoietic stem cells. Heterozygous germline mutations in DNMT3A lead to Tatton-Brown-Rahman Syndrome (TBRS), characterized by obesity and excessive height. While DNMT3A is known to impact feeding behavior via the hypothalamus, here we investigated a role in adipocyte progenitors utilizing heterozygous knockout mice that recapitulate cardinal TBRS phenotypes. These mice become morbidly obese due to adipocyte enlargement and tissue expansion. Adipose tissue in these mice exhibited defects in preadipocyte maturation and precocious activation of inflammatory gene networks, including interleukin-6 signaling. Adipocyte progenitor cell lines lacking DNMT3A exhibited aberrant differentiation. Furthermore, mice in which Dnmt3a was specifically ablated in adipocyte progenitors showed enlarged fat depots and increased progenitor numbers, partly recapitulating the TBRS obesity phenotypes. Loss of DNMT3A led to constitutive DNA hypomethylation, such that the DNA methylation landscape of young adipocyte progenitors resemble that of older wild-type mice. Together, our results demonstrate that DNMT3A coordinates both the central and local control of energy storage required to maintain normal weight and prevent inflammatory obesity.


Asunto(s)
Discapacidad Intelectual , Errores Innatos del Metabolismo , Obesidad Mórbida , Adipogénesis , Animales , ADN , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Discapacidad Intelectual/genética , Ratones
20.
Diabetes ; 71(7): 1400-1409, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35499627

RESUMEN

The function of prohibitin-1 (PHB1) in adipocyte mitochondrial respiration, adaptive thermogenesis, and long-chain fatty acid (LCFA) metabolism has been reported. While intracellular PHB1 expression is ubiquitous, cell surface PHB1 localization is selective for adipocytes and endothelial cells of adipose tissue. The importance of PHB1 in adipose endothelium has not been investigated, and its vascular cell surface function has remained unclear. Here, we generated and analyzed mice with PHB1 knock-out specifically in endothelial cells (PHB1 EC-KO). Despite the lack of endothelial PHB1, mice developed normally and had normal vascularization in both white adipose tissue and brown adipose tissue (BAT). Tumor and ex vivo explant angiogenesis assays also have not detected a functional defect in PHB1 KO endothelium. No metabolic phenotype was observed in PHB1 EC-KO mice raised on a regular diet. We show that both male and female PHB1 EC-KO mice have normal body composition and adaptive thermogenesis. However, PHB1 EC-KO mice displayed higher insulin sensitivity and increased glucose clearance when fed a high-fat diet. We demonstrate that the efficacy of LCFA deposition by adipocytes is decreased by PHB1 EC-KO, in particular in BAT. Consistent with that, EC-KO mice have a defect in clearing triglycerides from systemic circulation. Free fatty acid release upon lipolysis induction was also found to be reduced in PHB1 EC-KO mice. Our results demonstrate that PHB1 in endothelial cells regulates bidirectional LCFA transport and thereby suppresses glucose utilization.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Ácidos Grasos , Prohibitinas , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Células Endoteliales , Endotelio , Ácidos Grasos/metabolismo , Femenino , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Termogénesis/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA