Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e29988, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707445

RESUMEN

The angiotensin-converting enzyme (ACE) gene (ACE) insertion/deletion (I/D) polymorphism raises the possibility of personalising ACE inhibitor therapy to optimise its efficiency and reduce side effects in genetically distinct subgroups. However, the extent of its influence among these subgroups is unknown. Therefore, we extended our computational model of blood pressure regulation to investigate the effect of the ACE I/D polymorphism on haemodynamic parameters in humans undergoing antihypertensive therapy. The model showed that the dependence of blood pressure on serum ACE activity is a function of saturation and therefore, the lack of association between ACE I/D and blood pressure levels may be due to high ACE activity in specific populations. Additionally, in an extended model simulating the effects of different classes of antihypertensive drugs, we explored the relationship between ACE I/D and the efficacy of inhibitors of the renin-angiotensin-aldosterone system. The model predicted that the response of cardiovascular and renal parameters to treatment directly depends on ACE activity. However, significant differences in parameter changes were observed only between groups with high and low ACE levels, while different ACE I/D genotypes within the same group had similar changes in absolute values. We conclude that a single genetic variant is responsible for only a small fraction of heredity in treatment success and its predictive value is limited.

2.
Heliyon ; 10(10): e30962, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803942

RESUMEN

The application of nanomedicine in the treatment of acute lung injury (ALI) has great potential for the development of new therapeutic strategies. To gain insight into the kinetics of nanocarrier distribution upon time-dependent changes in tissue permeability after ALI induction in mice, we developed a physiologically based pharmacokinetic model for albumin nanoparticles (ANP). The model was calibrated using data from mice treated with intraperitoneal LPS (6 mg/kg), followed by intravenous ANP (0.5 mg/mouse or about 20.8 mg/kg) at 0.5, 6, and 24 h. The simulation results reproduced the experimental observations and indicated that the accumulation of ANP in the lungs increased, reaching a peak 6 h after LPS injury, whereas it decreased in the liver, kidney, and spleen. The model predicted that LPS caused an immediate (within the first 30 min) dramatic increase in lung and kidney tissue permeability, whereas splenic tissue permeability gradually increased over 24 h after LPS injection. This information can be used to design new therapies targeting specific organs affected by bacterial infections and potentially by other inflammatory insults.

3.
Anim Nutr ; 17: 61-74, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38737579

RESUMEN

In recent decades, a lot of research has been conducted to explore poultry feeding behavior. However, up to now, the processes behind poultry feeding behavior remain poorly understood. The review generalizes modern expertise about the hormonal regulation of feeding behavior in chickens, focusing on signaling pathways mediated by insulin, leptin, and ghrelin and regulatory pathways with a cross-reference to mammals. This overview also summarizes state-of-the-art research devoted to hypothalamic neuropeptides that control feed intake and are prime candidates for predictors of feeding efficiency. Comparative analysis of the signaling pathways that mediate the feed intake regulation allowed us to conclude that there are major differences in the processes by which hormones influence specific neuropeptides and their contrasting roles in feed intake control between two vertebrate clades.

4.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255961

RESUMEN

mRNA vaccines have been shown to be effective in combating the COVID-19 pandemic. The amount of research on the use of mRNAs as preventive and therapeutic modalities has undergone explosive growth in the last few years. Nonetheless, the issue of the stability of mRNA molecules and their translation efficiency remains incompletely resolved. These characteristics of mRNA directly affect the expression level of a desired protein. Regulatory elements of RNA-5' and 3' untranslated regions (UTRs)-are responsible for translation efficiency. An optimal combination of the regulatory sequences allows mRNA to significantly increase the target protein's expression. We assessed the translation efficiency of mRNA encoding of firefly luciferase with various 5' and 3'UTRs in vitro on cell lines DC2.4 and THP1. We found that mRNAs containing 5'UTR sequences from eukaryotic genes HBB, HSPA1A, Rabb, or H4C2, or from the adenoviral leader sequence TPL, resulted in higher levels of luciferase bioluminescence 4 h after transfection of DC2.4 cells as compared with 5'UTR sequences used in vaccines mRNA-1273 and BNT162b2 from Moderna and BioNTech. mRNA containing TPL as the 5'UTR also showed higher efficiency (as compared with the 5'UTR from Moderna) at generating a T-cell response in mice immunized with mRNA vaccines encoding a multiepitope antigen. By contrast, no effects of various 5'UTRs and 3'UTRs were detectable in THP1 cells, suggesting that the observed effects are cell type specific. Further analyses enabled us to identify potential cell type-specific RNA-binding proteins that differ in landing sites within mRNAs with various 5'UTRs and 3'UTRs. Taken together, our data indicate high translation efficiency of TPL as a 5'UTR, according to experiments on DC2.4 cells and C57BL/6 mice.


Asunto(s)
Antígenos de Grupos Sanguíneos , Tuberculosis , Ratones , Animales , Humanos , Ratones Endogámicos C57BL , Vacunas de ARNm , Regiones no Traducidas 5'/genética , Regiones no Traducidas 3'/genética , Vacuna BNT162 , Pandemias , ARN Mensajero/genética
5.
Nucleic Acids Res ; 52(D1): D154-D163, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971293

RESUMEN

We present a major update of the HOCOMOCO collection that provides DNA binding specificity patterns of 949 human transcription factors and 720 mouse orthologs. To make this release, we performed motif discovery in peak sets that originated from 14 183 ChIP-Seq experiments and reads from 2554 HT-SELEX experiments yielding more than 400 thousand candidate motifs. The candidate motifs were annotated according to their similarity to known motifs and the hierarchy of DNA-binding domains of the respective transcription factors. Next, the motifs underwent human expert curation to stratify distinct motif subtypes and remove non-informative patterns and common artifacts. Finally, the curated subset of 100 thousand motifs was supplied to the automated benchmarking to select the best-performing motifs for each transcription factor. The resulting HOCOMOCO v12 core collection contains 1443 verified position weight matrices, including distinct subtypes of DNA binding motifs for particular transcription factors. In addition to the core collection, HOCOMOCO v12 provides motif sets optimized for the recognition of binding sites in vivo and in vitro, and for annotation of regulatory sequence variants. HOCOMOCO is available at https://hocomoco12.autosome.org and https://hocomoco.autosome.org.


Asunto(s)
Bases de Datos Genéticas , Regulación de la Expresión Génica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción , Animales , Humanos , Ratones , Sitios de Unión/genética , Motivos de Nucleótidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Internet , Dominios y Motivos de Interacción de Proteínas/genética
6.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446402

RESUMEN

Optimizing physical training regimens to increase muscle aerobic capacity requires an understanding of the internal processes that occur during exercise that initiate subsequent adaptation. During exercise, muscle cells undergo a series of metabolic events that trigger downstream signaling pathways and induce the expression of many genes in working muscle fibers. There are a number of studies that show the dependence of changes in the activity of AMP-activated protein kinase (AMPK), one of the mediators of cellular signaling pathways, on the duration and intensity of single exercises. The activity of various AMPK isoforms can change in different directions, increasing for some isoforms and decreasing for others, depending on the intensity and duration of the load. This review summarizes research data on changes in the activity of AMPK, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and other components of the signaling pathways in skeletal muscles during exercise. Based on these data, we hypothesize that the observed changes in AMPK activity may be largely related to metabolic and signaling transients rather than exercise intensity per se. Probably, the main events associated with these transients occur at the beginning of the exercise in a time window of about 1-10 min. We hypothesize that these transients may be partly due to putative trigger-like kinase/protein phosphatase interactions regulated by feedback loops. In addition, numerous dynamically changing factors, such as [Ca2+], metabolite concentration, and reactive oxygen and nitrogen species (RONS), can shift the switching thresholds and change the states of these triggers, thereby affecting the activity of kinases (in particular, AMPK and CaMKII) and phosphatases. The review considers the putative molecular mechanisms underlying trigger-like interactions. The proposed hypothesis allows for a reinterpretation of the experimental data available in the literature as well as the generation of ideas to optimize future training regimens.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Transducción de Señal/fisiología , Músculo Esquelético/metabolismo , Fosfoproteínas Fosfatasas/metabolismo
7.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293410

RESUMEN

Cancer treatment and pharmaceutical development require targeted treatment and less toxic therapeutic intervention to achieve real progress against this disease. In this scenario, nanomedicine emerged as a reliable tool to improve drug pharmacokinetics and to translate to the clinical biologics based on large molecules. However, the ability of our body to recognize foreign objects together with carrier transport heterogeneity derived from the combination of particle physical and chemical properties, payload and surface modification, make the designing of effective carriers very difficult. In this scenario, physiologically based pharmacokinetic modeling can help to design the particles and eventually predict their ability to reach the target and treat the tumor. This effort is performed by scientists with specific expertise and skills and familiarity with artificial intelligence tools such as advanced software that are not usually in the "cords" of traditional medical or material researchers. The goal of this review was to highlight the advantages that computational modeling could provide to nanomedicine and bring together scientists with different background by portraying in the most simple way the work of computational developers through the description of the tools that they use to predict nanoparticle transport and tumor targeting in our body.


Asunto(s)
Productos Biológicos , Nanopartículas , Neoplasias , Humanos , Distribución Tisular , Análisis de Datos , Inteligencia Artificial , Modelos Biológicos , Nanopartículas/química , Simulación por Computador , Programas Informáticos , Neoplasias/patología
8.
Hum Genomics ; 16(1): 24, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869513

RESUMEN

BACKGROUND: More than half of human protein-coding genes have an alternative transcription start site (TSS). We aimed to investigate the contribution of alternative TSSs to the acute-stress-induced transcriptome response in human tissue (skeletal muscle) using the cap analysis of gene expression approach. TSSs were examined at baseline and during recovery after acute stress (a cycling exercise). RESULTS: We identified 44,680 CAGE TSS clusters (including 3764 first defined) belonging to 12,268 genes and annotated for the first time 290 TSSs belonging to 163 genes. The transcriptome dynamically changes during the first hours after acute stress; the change in the expression of 10% of genes was associated with the activation of alternative TSSs, indicating differential TSSs usage. The majority of the alternative TSSs do not increase proteome complexity suggesting that the function of thousands of alternative TSSs is associated with the fine regulation of mRNA isoform expression from a gene due to the transcription factor-specific activation of various alternative TSSs. We identified individual muscle promoter regions for each TSS using muscle open chromatin data (ATAC-seq and DNase-seq). Then, using the positional weight matrix approach we predicted time course activation of "classic" transcription factors involved in response of skeletal muscle to contractile activity, as well as diversity of less/un-investigated factors. CONCLUSIONS: Transcriptome response induced by acute stress related to activation of the alternative TSSs indicates that differential TSSs usage is an essential mechanism of fine regulation of gene response to stress stimulus. A comprehensive resource of accurate TSSs and individual promoter regions for each TSS in muscle was created. This resource together with the positional weight matrix approach can be used to accurate prediction of TFs in any gene(s) of interest involved in the response to various stimuli, interventions or pathological conditions in human skeletal muscle.


Asunto(s)
Regulación de la Expresión Génica , Transcriptoma , Humanos , Músculo Esquelético , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcriptoma/genética
9.
Nucleic Acids Res ; 50(W1): W124-W131, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35536253

RESUMEN

BioUML (https://www.biouml.org)-is a web-based integrated platform for systems biology and data analysis. It supports visual modelling and construction of hierarchical biological models that allow us to construct the most complex modular models of blood pressure regulation, skeletal muscle metabolism, COVID-19 epidemiology. BioUML has been integrated with git repositories where users can store their models and other data. We have also expanded the capabilities of BioUML for data analysis and visualization of biomedical data: (i) any programs and Jupyter kernels can be plugged into the BioUML platform using Docker technology; (ii) BioUML is integrated with the Galaxy and Galaxy Tool Shed; (iii) BioUML provides two-way integration with R and Python (Jupyter notebooks): scripts can be executed on the BioUML web pages, and BioUML functions can be called from scripts; (iv) using plug-in architecture, specialized viewers and editors can be added. For example, powerful genome browsers as well as viewers for molecular 3D structure are integrated in this way; (v) BioUML supports data analyses using workflows (own format, Galaxy, CWL, BPMN, nextFlow). Using these capabilities, we have initiated a new branch of the BioUML development-u-science-a universal scientific platform that can be configured for specific research requirements.


Asunto(s)
Modelos Biológicos , Programas Informáticos , Humanos , Biología Computacional , COVID-19/epidemiología , Biología de Sistemas
10.
Nucleic Acids Res ; 50(W1): W51-W56, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35446421

RESUMEN

We present ANANASTRA, https://ananastra.autosome.org, a web server for the identification and annotation of regulatory single-nucleotide polymorphisms (SNPs) with allele-specific binding events. ANANASTRA accepts a list of dbSNP IDs or a VCF file and reports allele-specific binding (ASB) sites of particular transcription factors or in specific cell types, highlighting those with ASBs significantly enriched at SNPs in the query list. ANANASTRA is built on top of a systematic analysis of allelic imbalance in ChIP-Seq experiments and performs the ASB enrichment test against background sets of SNPs found in the same source experiments as ASB sites but not displaying significant allelic imbalance. We illustrate ANANASTRA usage with selected case studies and expect that ANANASTRA will help to conduct the follow-up of GWAS in terms of establishing functional hypotheses and designing experimental verification.


Asunto(s)
Polimorfismo de Nucleótido Simple , Factores de Transcripción , Alelos , Sitios de Unión , Estudio de Asociación del Genoma Completo , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN
11.
Front Physiol ; 13: 1070115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589434

RESUMEN

Hypertension is a multifactorial disease arising from complex pathophysiological pathways. Individual characteristics of patients result in different responses to various classes of antihypertensive medications. Therefore, evaluating the efficacy of therapy based on in silico predictions is an important task. This study is a continuation of research on the modular agent-based model of the cardiovascular and renal systems (presented in the previously published article). In the current work, we included in the model equations simulating the response to antihypertensive therapies with different mechanisms of action. For this, we used the pharmacodynamic effects of the angiotensin II receptor blocker losartan, the calcium channel blocker amlodipine, the angiotensin-converting enzyme inhibitor enalapril, the direct renin inhibitor aliskiren, the thiazide diuretic hydrochlorothiazide, and the ß-blocker bisoprolol. We fitted therapy parameters based on known clinical trials for all considered medications, and then tested the model's ability to show reasonable dynamics (expected by clinical observations) after treatment with individual drugs and their dual combinations in a group of virtual patients with hypertension. The extended model paves the way for the next step in personalized medicine that is adapting the model parameters to a real patient and predicting his response to antihypertensive therapy. The model is implemented in the BioUML software and is available at https://gitlab.sirius-web.org/virtual-patient/antihypertensive-treatment-modeling.

12.
Front Physiol ; 12: 746300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867451

RESUMEN

Here we present a modular agent-based mathematical model of the human cardiovascular and renal systems. It integrates the previous models primarily developed by A. C. Guyton, F. Karaaslan, K. M. Hallow, and Y. V. Solodyannikov. We performed the model calibration to find an equilibrium state within the normal vital sign ranges for a healthy adult. We verified the model's abilities to reproduce equilibrium states with abnormal physiological values related to different combinations of cardiovascular diseases (such as systemic hypertension, chronic heart failure, pulmonary hypertension, etc.). For the model creation and validation, we involved over 200 scientific studies covering known models of the human cardiovascular and renal functions, biosimulation platforms, and clinical measurements of physiological quantities in normal and pathological conditions. We compiled detailed documentation describing all equations, parameters and variables of the model with justification of all formulas and values. The model is implemented in BioUML and available in the web-version of the software.

13.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638694

RESUMEN

Skeletal muscle is the principal contributor to exercise-induced changes in human metabolism. Strikingly, although it has been demonstrated that a lot of metabolites accumulating in blood and human skeletal muscle during an exercise activate different signaling pathways and induce the expression of many genes in working muscle fibres, the systematic understanding of signaling-metabolic pathway interrelations with downstream genetic regulation in the skeletal muscle is still elusive. Herein, a physiologically based computational model of skeletal muscle comprising energy metabolism, Ca2+, and AMPK (AMP-dependent protein kinase) signaling pathways and the expression regulation of genes with early and delayed responses was developed based on a modular modeling approach and included 171 differential equations and more than 640 parameters. The integrated modular model validated on diverse including original experimental data and different exercise modes provides a comprehensive in silico platform in order to decipher and track cause-effect relationships between metabolic, signaling, and gene expression levels in skeletal muscle.


Asunto(s)
Señalización del Calcio , Metabolismo Energético , Ejercicio Físico , Regulación de la Expresión Génica , Modelos Biológicos , Músculo Esquelético/metabolismo , Humanos
14.
Biology (Basel) ; 10(6)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203013

RESUMEN

The prevention of muscle atrophy carries with it clinical significance for the control of increased morbidity and mortality following physical inactivity. While major transcriptional events associated with muscle atrophy-recovery processes are the subject of active research on the gene level, the contribution of non-coding regulatory elements and alternative promoter usage is a major source for both the production of alternative protein products and new insights into the activity of transcription factors. We used the cap-analysis of gene expression (CAGE) to create a genome-wide atlas of promoter-level transcription in fast (m. EDL) and slow (m. soleus) muscles in rats that were subjected to hindlimb unloading and subsequent recovery. We found that the genetic regulation of the atrophy-recovery cycle in two types of muscle is mediated by different pathways, including a unique set of non-coding transcribed regulatory elements. We showed that the activation of "shadow" enhancers is tightly linked to specific stages of atrophy and recovery dynamics, with the largest number of specific regulatory elements being transcriptionally active in the muscles on the first day of recovery after a week of disuse. The developed comprehensive database of transcription of regulatory elements will further stimulate research on the gene regulation of muscle homeostasis in mammals.

15.
Nat Commun ; 12(1): 2751, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980847

RESUMEN

Sequence variants in gene regulatory regions alter gene expression and contribute to phenotypes of individual cells and the whole organism, including disease susceptibility and progression. Single-nucleotide variants in enhancers or promoters may affect gene transcription by altering transcription factor binding sites. Differential transcription factor binding in heterozygous genomic loci provides a natural source of information on such regulatory variants. We present a novel approach to call the allele-specific transcription factor binding events at single-nucleotide variants in ChIP-Seq data, taking into account the joint contribution of aneuploidy and local copy number variation, that is estimated directly from variant calls. We have conducted a meta-analysis of more than 7 thousand ChIP-Seq experiments and assembled the database of allele-specific binding events listing more than half a million entries at nearly 270 thousand single-nucleotide polymorphisms for several hundred human transcription factors and cell types. These polymorphisms are enriched for associations with phenotypes of medical relevance and often overlap eQTLs, making candidates for causality by linking variants with molecular mechanisms. Specifically, there is a special class of switching sites, where different transcription factors preferably bind alternative alleles, thus revealing allele-specific rewiring of molecular circuitry.


Asunto(s)
Alelos , Genoma Humano , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Cromatina/metabolismo , Bases de Datos Genéticas , Dosificación de Gen , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Humanos , Motivos de Nucleótidos , Fenotipo , Polimorfismo de Nucleótido Simple , Unión Proteica , Sitios de Carácter Cuantitativo
16.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530535

RESUMEN

Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors.


Asunto(s)
Adaptación Fisiológica , Ejercicio Físico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Transcriptoma , Biología Computacional/métodos , Redes Reguladoras de Genes , Humanos , Anotación de Secuencia Molecular , Fenotipo , Entrenamiento de Fuerza
17.
Nucleic Acids Res ; 49(D1): D104-D111, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33231677

RESUMEN

The Gene Transcription Regulation Database (GTRD; http://gtrd.biouml.org/) contains uniformly annotated and processed NGS data related to gene transcription regulation: ChIP-seq, ChIP-exo, DNase-seq, MNase-seq, ATAC-seq and RNA-seq. With the latest release, the database has reached a new level of data integration. All cell types (cell lines and tissues) presented in the GTRD were arranged into a dictionary and linked with different ontologies (BRENDA, Cell Ontology, Uberon, Cellosaurus and Experimental Factor Ontology) and with related experiments in specialized databases on transcription regulation (FANTOM5, ENCODE and GTEx). The updated version of the GTRD provides an integrated view of transcription regulation through a dedicated web interface with advanced browsing and search capabilities, an integrated genome browser, and table reports by cell types, transcription factors, and genes of interest.


Asunto(s)
Bases de Datos Genéticas , Regulación de la Expresión Génica , Genoma , Factores de Transcripción/genética , Transcripción Genética , Animales , Línea Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ontología de Genes , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Programas Informáticos , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
18.
PLoS One ; 15(12): e0243332, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33347457

RESUMEN

Creating a complete picture of the regulation of transcription seems to be an urgent task of modern biology. Regulation of transcription is a complex process carried out by transcription factors (TFs) and auxiliary proteins. Over the past decade, ChIP-Seq has become the most common experimental technology studying genome-wide interactions between TFs and DNA. We assessed the transcriptional significance of cell line-specific features using regression analysis of ChIP-Seq datasets from the GTRD database and transcriptional start site (TSS) activities from the FANTOM5 expression atlas. For this purpose, we initially generated a large number of features that were defined as the presence or absence of TFs in different promoter regions around TSSs. Using feature selection and regression analysis, we identified sets of the most important TFs that affect expression activity of TSSs in human cell lines such as HepG2, K562 and HEK293. We demonstrated that some TFs can be classified as repressors and activators depending on their location relative to TSS.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica , Factores de Transcripción , Transcriptoma , Células HEK293 , Células Hep G2 , Humanos , Células K562 , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
19.
Sci Rep ; 10(1): 3514, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103137

RESUMEN

Regular low intensity aerobic exercise (aerobic training) provides effective protection against various metabolic disorders. Here, the roles played by transient transcriptome responses to acute exercise and by changes in baseline gene expression during up-regulation of protein content in human skeletal muscle were investigated after 2 months of aerobic training. Seven untrained males were involved in a 2 month aerobic cycling training program. Mass-spectrometry and RNA sequencing were used to evaluate proteome and transcriptome responses to training and acute exercise. We found that proteins with different functions are regulated differently at the transcriptional level; for example, a training-induced increase in the content of extracellular matrix-related proteins is regulated at the transcriptional level, while an increase in the content of mitochondrial proteins is not. An increase in the skeletal muscle content of several proteins (including mitochondrial proteins) was associated with increased protein stability, which is related to a chaperone-dependent mechanism and/or reduced regulation by proteolysis. These findings increase our understanding of the molecular mechanisms underlying regulation of protein expression in human skeletal muscle subjected to repeated stress (long term aerobic training) and may provide an opportunity to control the expression of specific proteins (e.g., extracellular matrix-related proteins, mitochondrial proteins) through physiological and/or pharmacological approaches.


Asunto(s)
Ejercicio Físico/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Estrés Fisiológico/fisiología , Transcriptoma/fisiología , Adulto , Ciclismo , Humanos , Masculino
20.
PLoS One ; 14(8): e0221760, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31465497

RESUMEN

Chromatin immunoprecipitation followed by sequencing, i.e. ChIP-Seq, is a widely used experimental technology for the identification of functional protein-DNA interactions. Nowadays, such databases as ENCODE, GTRD, ChIP-Atlas and ReMap systematically collect and annotate a large number of ChIP-Seq datasets. Comprehensive control of dataset quality is currently indispensable to select the most reliable data for further analysis. In addition to existing quality control metrics, we have developed two novel metrics that allow to control false positives and false negatives in ChIP-Seq datasets. For this purpose, we have adapted well-known population size estimate for determination of unknown number of genuine transcription factor binding regions. Determination of the proposed metrics was based on overlapping distinct binding sites derived from processing one ChIP-Seq experiment by different peak callers. Moreover, the metrics also can be useful for assessing quality of datasets obtained from processing distinct ChIP-Seq experiments by a given peak caller. We also have shown that these metrics appear to be useful not only for dataset selection but also for comparison of peak callers and identification of site motifs based on ChIP-Seq datasets. The developed algorithm for determination of the false positive control metric and false negative control metric for ChIP-Seq datasets was implemented as a plugin for a BioUML platform: https://ict.biouml.org/bioumlweb/chipseq_analysis.html.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Bases de Datos de Ácidos Nucleicos , Análisis de Secuencia de ADN , Algoritmos , Área Bajo la Curva , Sitios de Unión , Control de Calidad , Curva ROC , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA