RESUMEN
Neu1 is a glycosidase that releases sialic acids from the non-reducing ends of glycoconjugates, and its enzymatic properties are conserved among vertebrates. Recently, Neu1-KO zebrafish were generated using genome editing technology, and the KO fish showed abnormal emotional behavior, such as low schooling, low aggressiveness, and excess exploratory behavior, accompanied by the downregulation of anxiety-related genes. To examine the alteration of neuronal and glial cells in Neu1-KO zebrafish, we analyzed the molecular profiles in the zebrafish brain, focusing on the midbrain and telencephalon. Using immunohistochemistry, we found that signals of Maackia amurensis (MAM) lectin that recognizes Sia α2-3 linked glycoconjugates were highly increased in Neu1-KO zebrafish brains, accompanied by an increase in Lamp1a. Neu1-KO zebrafish suppressed the gene expression of AMPA-type glutamate receptors such as gria1a, gria2a, and gria3b, and vesicular glutamate transporter 1. Additionally, Neu1-KO zebrafish induced the hyperactivation of astrocytes accompanied by an increase in Gfap and phosphorylated ERK levels, while the mRNA levels of astrocyte glutamate transporters (eaat1a, eaat1c, and eaat2) were downregulated. The mRNA levels of sypb and ho1b, which are markers of synaptic plasticity, were also suppressed by Neu1 deficiency. Abnormal activity of microglia was also revealed by IHC, and the expressions of iNOS and IL-1ß, an inflammatory cytokine, were increased in Neu1-KO zebrafish. Furthermore, drastic neuronal degeneration was detected in Neu1-KO zebrafish using Fluoro-Jade B staining. Collectively, the neuronal and glial abnormalities in Neu1-KO zebrafish may be caused by changes in the excitatory neurotransmitter glutamate and involved in the emotional abnormalities.
Asunto(s)
Neuraminidasa , Pez Cebra , Animales , Glutamatos , Glicoconjugados , Neuraminidasa/genética , Neuroglía/metabolismo , ARN Mensajero/metabolismo , Pez Cebra/genéticaRESUMEN
NEU1 sialidase hydrolyzes sialic acids from glycoconjugates in lysosomes. Deficiency of NEU1 causes sialidosis with symptoms including facial dysmorphism, bone dysplasia, and neurodegeneration. However, the effects of NEU1 deficiency on emotional activity have not been explored. Here, we conducted the behavioral analysis using Neu1-knockout zebrafish (Neu1-KO). Neu1-KO zebrafish showed normal swimming similar to wild-type zebrafish (WT), whereas shoaling was decreased and accompanied by greater inter-fish distance than WT zebrafish. The aggression test showed a reduced aggressive behavior in Neu1-KO zebrafish than in WT zebrafish. In the mirror and 3-chambers test, Neu1-KO zebrafish showed more interest toward the opponent in the mirror and multiple unfamiliar zebrafish, respectively, than WT zebrafish. Furthermore, Neu1-KO zebrafish also showed increased interaction with different fish species, whereas WT zebrafish avoided them. In the black-white preference test, Neu1-KO zebrafish showed an abnormal preference for the white region, whereas WT zebrafish preferred the black region. Neu1-KO zebrafish were characterized by a downregulation of the anxiety-related genes of the hypothalamic-pituitary-adrenal axis and upregulation of lamp1a, an activator of lysosomal exocytosis, with their brains accumulating several sphingoglycolipids. This study revealed that Neu1 deficiency caused abnormal emotional behavior in zebrafish, possibly due to neuronal dysfunction induced by lysosomal exocytosis.