Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(38): e2321525121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39250660

RESUMEN

A major next step in hematopoietic stem cell (HSC) biology is to enhance our quantitative understanding of cellular and evolutionary dynamics involved in undisturbed hematopoiesis. Mathematical models have been and continue to be key in this respect, and are most powerful when parameterized experimentally and containing sufficient biological complexity. In this paper, we use data from label propagation experiments in mice to parameterize a mathematical model of hematopoiesis that includes homeostatic control mechanisms as well as clonal evolution. We find that nonlinear feedback control can drastically change the interpretation of kinetic estimates at homeostasis. This suggests that short-term HSC and multipotent progenitors can dynamically adjust to sustain themselves temporarily in the absence of long-term HSCs, even if they differentiate more often than they self-renew in undisturbed homeostasis. Additionally, the presence of feedback control in the model renders the system resilient against mutant invasion. Invasion barriers, however, can be overcome by a combination of age-related changes in stem cell differentiation and evolutionary niche construction dynamics based on a mutant-associated inflammatory environment. This helps us understand the evolution of e.g., TET2 or DNMT3A mutants, and how to potentially reduce mutant burden.


Asunto(s)
Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas , Mutación , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Hematopoyesis/genética , Hematopoyesis/fisiología , ADN Metiltransferasa 3A/metabolismo , Homeostasis , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Modelos Biológicos , Linaje de la Célula , Dioxigenasas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evolución Clonal , Modelos Teóricos
2.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38894470

RESUMEN

Fabry disease is a lysosomal storage disorder caused by a significant decrease in the activity or absence of the enzyme α-galactosidase A. The diagnostics of Fabry disease during newborn screening are reasonable, due to the availability of enzyme replacement therapy. This paper presents an electrochemical method using complementary metal-oxide semiconductor (CMOS)-compatible ion-sensitive field effect transistors (ISFETs) with hafnium oxide-sensitive surfaces for the detection of α-galactosidase A activity in dried blood spot extracts. The capability of ISFETs to detect the reaction catalyzed by α-galactosidase A was demonstrated. The buffer composition was optimized to provide suitable conditions for both enzyme and ISFET performance. The use of ISFET structures as sensor elements allowed for the label-free detection of enzymatic reactions with melibiose, a natural substrate of α-galactosidase A, instead of a synthetic fluorogenic one. ISFET chips were packaged with printed circuit boards and microfluidic reaction chambers to enable long-term signal measurement using a custom device. The packaged sensors were demonstrated to discriminate between normal and inhibited GLA activity in dried blood spots extracts. The described method offers a promising solution for increasing the widespread distribution of newborn screening of Fabry disease.


Asunto(s)
Técnicas Biosensibles , Pruebas con Sangre Seca , Enfermedad de Fabry , Transistores Electrónicos , alfa-Galactosidasa , alfa-Galactosidasa/sangre , Pruebas con Sangre Seca/métodos , Humanos , Enfermedad de Fabry/sangre , Enfermedad de Fabry/diagnóstico , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Recién Nacido , Tamizaje Neonatal/métodos
3.
Sensors (Basel) ; 24(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793863

RESUMEN

Biosensors based on ion-sensitive field effect transistors (ISFETs) combined with aptamers offer a promising and convenient solution for point-of-care testing applications due to the ability for fast and label-free detection of a wide range of biomarkers. Mobile and easy-to-use readout devices for the ISFET aptasensors would contribute to further development of the field. In this paper, the development of a portable PC-controlled device for detecting aptamer-target interactions using ISFETs is described. The device assembly allows selective modification of individual ISFETs with different oligonucleotides. Ta2O5-gated ISFET structures were optimized to minimize trapped charge and capacitive attenuation. Integrated CMOS readout circuits with linear transfer function were used to minimize the distortion of the original ISFET signal. An external analog signal digitizer with constant voltage and superimposed high-frequency sine wave reference voltage capabilities was designed to increase sensitivity when reading ISFET signals. The device performance was demonstrated with the aptamer-driven detection of troponin I in both reference voltage setting modes. The sine wave reference voltage measurement method reduced the level of drift over time and enabled a lowering of the minimum detectable analyte concentration. In this mode (constant voltage 2.4 V and 10 kHz 0.1Vp-p), the device allowed the detection of troponin I with a limit of detection of 3.27 ng/mL. Discrimination of acute myocardial infarction was demonstrated with the developed device. The ISFET device provides a platform for the multiplexed detection of different biomarkers in point-of-care testing.


Asunto(s)
Aptámeros de Nucleótidos , Biomarcadores , Técnicas Biosensibles , Transistores Electrónicos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Biomarcadores/análisis , Humanos , Troponina I/análisis , Troponina I/sangre
4.
Nat Commun ; 14(1): 6642, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863909

RESUMEN

The literature about mutant invasion and fixation typically assumes populations to exist in isolation from their ecosystem. Yet, populations are part of ecological communities, and enemy-victim (e.g. predator-prey or pathogen-host) interactions are particularly common. We use spatially explicit, computational pathogen-host models (with wild-type and mutant hosts) to re-visit the established theory about mutant fixation, where the pathogen equally attacks both wild-type and mutant individuals. Mutant fitness is assumed to be unrelated to infection. We find that pathogen presence substantially weakens selection, increasing the fixation probability of disadvantageous mutants and decreasing it for advantageous mutants. The magnitude of the effect rises with the infection rate. This occurs because infection induces spatial structures, where mutant and wild-type individuals are mostly spatially separated. Thus, instead of mutant and wild-type individuals competing with each other, it is mutant and wild-type "patches" that compete, resulting in smaller fitness differences and weakened selection. This implies that the deleterious mutant burden in natural populations might be higher than expected from traditional theory.


Asunto(s)
Ecosistema , Modelos Biológicos , Humanos , Probabilidad , Dinámica Poblacional
5.
J Evol Biol ; 36(2): 444-460, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36514852

RESUMEN

Mutant dynamics in fragmented populations have been studied extensively in evolutionary biology. Yet, open questions remain, both experimentally and theoretically. Some of the fundamental properties predicted by models still need to be addressed experimentally. We contribute to this by using a combination of experiments and theory to investigate the role of migration in mutant distribution. In the case of neutral mutants, while the mean frequency of mutants is not influenced by migration, the probability distribution is. To address this empirically, we performed in vitro experiments, where mixtures of GFP-labelled ("mutant") and non-labelled ("wid-type") murine cells were grown in wells (demes), and migration was mimicked via cell transfer from well to well. In the presence of migration, we observed a change in the skewedness of the distribution of the mutant frequencies in the wells, consistent with previous and our own model predictions. In the presence of de novo mutant production, we used modelling to investigate the level at which disadvantageous mutants are predicted to exist, which has implications for the adaptive potential of the population in case of an environmental change. In panmictic populations, disadvantageous mutants can persist around a steady state, determined by the rate of mutant production and the selective disadvantage (selection-mutation balance). In a fragmented system that consists of demes connected by migration, a steady-state persistence of disadvantageous mutants is also observed, which, however, is fundamentally different from the mutation-selection balance and characterized by higher mutant levels. The increase in mutant frequencies above the selection-mutation balance can be maintained in small ( N < N c ) demes as long as the migration rate is sufficiently small. The migration rate above which the mutants approach the selection-mutation balance decays exponentially with N / N c . The observed increase in the mutant numbers is not explained by the change in the effective population size. Implications for evolutionary processes in diseases are discussed, where the pre-existence of disadvantageous drug-resistant mutant cells or pathogens drives the response of the disease to treatments.


Asunto(s)
Modelos Genéticos , Selección Genética , Animales , Ratones , Mutación , Dinámica Poblacional , Evolución Biológica
6.
Bull Math Biol ; 84(12): 144, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36334172

RESUMEN

It is well known in the literature that human behavior can change as a reaction to disease observed in others, and that such behavioral changes can be an important factor in the spread of an epidemic. It has been noted that human behavioral traits in disease avoidance are under selection in the presence of infectious diseases. Here, we explore a complementary trend: the pathogen itself might experience a force of selection to become less "visible," or less "symptomatic," in the presence of such human behavioral trends. Using a stochastic SIR agent-based model, we investigated the co-evolution of two viral strains with cross-immunity, where the resident strain is symptomatic while the mutant strain is asymptomatic. We assumed that individuals exercised self-regulated social distancing (SD) behavior if one of their neighbors was infected with a symptomatic strain. We observed that the proportion of asymptomatic carriers increased over time with a stronger effect corresponding to higher levels of self-regulated SD. Adding mandated SD made the effect more significant, while the existence of a time-delay between the onset of infection and the change of behavior reduced the advantage of the asymptomatic strain. These results were consistent under random geometric networks, scale-free networks, and a synthetic network that represented the social behavior of the residents of New Orleans.


Asunto(s)
Epidemias , Modelos Biológicos , Humanos , Conceptos Matemáticos
7.
Biomedicines ; 10(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35625822

RESUMEN

The detection of cardiac biomarkers is used for diagnostics, prognostics, and the risk assessment of cardiovascular diseases. The analysis of cardiac biomarkers is routinely performed with high-sensitivity immunological assays. Aptamers offer an attractive alternative to antibodies for analytical applications but, to date, are not widely practically implemented in diagnostics and medicinal research. This review summarizes the information on the most common cardiac biomarkers and the current state of aptamer research regarding these biomarkers. Aptamers as an analytical tool are well established for troponin I, troponin T, myoglobin, and C-reactive protein. For the rest of the considered cardiac biomarkers, the isolation of novel aptamers or more detailed characterization of the known aptamers are required. More attention should be addressed to the development of dual-aptamer sandwich detection assays and to the studies of aptamer sensing in alternative biological fluids. The universalization of aptamer-based biomarker detection platforms and the integration of aptamer-based sensing to clinical studies are demanded for the practical implementation of aptamers to routine diagnostics. Nevertheless, the wide usage of aptamers for the diagnostics of cardiovascular diseases is promising for the future, with respect to both point-of-care and laboratory testing.

8.
PLoS Comput Biol ; 18(5): e1010039, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35522694

RESUMEN

Feedback mechanisms within cell lineages are thought to be important for maintaining tissue homeostasis. Mathematical models that assume well-mixed cell populations, together with experimental data, have suggested that negative feedback from differentiated cells on the stem cell self-renewal probability can maintain a stable equilibrium and hence homeostasis. Cell lineage dynamics, however, are characterized by spatial structure, which can lead to different properties. Here, we investigate these dynamics using spatially explicit computational models, including cell division, differentiation, death, and migration / diffusion processes. According to these models, the negative feedback loop on stem cell self-renewal fails to maintain homeostasis, both under the assumption of strong spatial restrictions and fast migration / diffusion. Although homeostasis cannot be maintained, this feedback can regulate cell density and promote the formation of spatial structures in the model. Tissue homeostasis, however, can be achieved if spatially restricted negative feedback on self-renewal is combined with an experimentally documented spatial feedforward loop, in which stem cells regulate the fate of transit amplifying cells. This indicates that the dynamics of feedback regulation in tissue cell lineages are more complex than previously thought, and that combinations of spatially explicit control mechanisms are likely instrumental.


Asunto(s)
Modelos Biológicos , Células Madre , Diferenciación Celular/fisiología , Linaje de la Célula , Retroalimentación
9.
Food Chem ; 389: 133051, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35490517

RESUMEN

Dielectric breakdown technique was utlised to fabricate 5-6 nm nanopores for vanillin detection in various food samples. A highly selective aptamer (Van_74) with high binding affinity towards vanillin was used as capture probe. Under optimal conditions, aptamer/vanillin complex translocation induced deeper events than the bare aptamer. As a result, the proposed nanopore aptasensor exhibits a linear range from 0.5 to 5 nM (R2 = 0.972) and a low detection limit of 500 pM, which is significantly better than conventional platforms. Furthermore, our aptasensor showed excellent immunity against different interferons and was used to detect vanillin in different food samples. The food sample measurements were confirmed with an additional UV-Vis assay, the results of the two techniques were statistically evaluated and showed no statistically significant difference. Hence, this work represents a proof-of-concept involving the design and testing of aptamer/nanopore sensors for small molecules detection, which plays a critical role in food safety.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanoporos , Aptámeros de Nucleótidos/química , Benzaldehídos , Técnicas Biosensibles/métodos , Oro/química , Límite de Detección
10.
Elife ; 112022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35416770

RESUMEN

Aspirin intake has been shown to lead to significant protection against colorectal cancer, for example with an up to twofold reduction in colorectal adenoma incidence rates at higher doses. The mechanisms contributing to protection are not yet fully understood. While aspirin is an anti-inflammatory drug and can thus influence the tumor microenvironment, in vitro and in vivo experiments have recently shown that aspirin can also have a direct effect on cellular kinetics and fitness. It reduces the rate of tumor cell division and increases the rate of cell death. The question arises whether such changes in cellular fitness are sufficient to significantly contribute to the epidemiologically observed protection. To investigate this, we constructed a class of mathematical models of in vivo evolution of advanced adenomas, parameterized it with available estimates, and calculated population level incidence. Fitting the predictions to age incidence data revealed that only a model that included colonic crypt competition can account for the observed age-incidence curve. This model was then used to predict modified incidence patterns if cellular kinetics were altered as a result of aspirin treatment. We found that changes in cellular fitness that were within the experimentally observed ranges could reduce advanced adenoma incidence by a sufficient amount to account for age incidence data in aspirin-treated patient cohorts. While the mechanisms that contribute to the protective effect of aspirin are likely complex and multi-factorial, our study demonstrates that direct aspirin-induced changes of tumor cell fitness can significantly contribute to epidemiologically observed reduced incidence patterns.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Adenoma/epidemiología , Adenoma/prevención & control , Antiinflamatorios no Esteroideos/uso terapéutico , Aspirina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/prevención & control , Humanos , Incidencia , Cinética , Microambiente Tumoral
11.
Nat Commun ; 13(1): 121, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013215

RESUMEN

HIV is difficult to eradicate due to the persistence of a long-lived reservoir of latently infected cells. Previous studies have shown that natural killer cells are important to inhibiting HIV infection, but it is unclear whether the administration of natural killer cells can reduce rebound viremia when anti-retroviral therapy is discontinued. Here we show the administration of allogeneic human peripheral blood natural killer cells delays viral rebound following interruption of anti-retroviral therapy in humanized mice infected with HIV-1. Utilizing genetically barcoded virus technology, we show these natural killer cells efficiently reduced viral clones rebounding from latency. Moreover, a kick and kill strategy comprised of the protein kinase C modulator and latency reversing agent SUW133 and allogeneic human peripheral blood natural killer cells during anti-retroviral therapy eliminated the viral reservoir in a subset of mice. Therefore, combinations utilizing latency reversal agents with targeted cellular killing agents may be an effective approach to eradicating the viral reservoir.


Asunto(s)
Fármacos Anti-VIH/farmacología , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/terapia , VIH-1/efectos de los fármacos , Células Asesinas Naturales/inmunología , Inhibidores de Proteínas Quinasas/farmacología , Viremia/terapia , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Médula Ósea/virología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Técnicas de Cocultivo , Femenino , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/inmunología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Células Asesinas Naturales/trasplante , Masculino , Ratones , Ratones Transgénicos , Proteína Quinasa C/genética , Proteína Quinasa C/inmunología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/virología , Carga Viral/efectos de los fármacos , Viremia/genética , Viremia/inmunología , Viremia/virología , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
12.
Anal Bioanal Chem ; 414(4): 1609-1622, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34783880

RESUMEN

An electrochemical aptamer-based sensor was developed for glutamate, the major excitatory neurotransmitter in the central nervous system. Determining glutamic acid release and glutamic acid levels is crucial for studying signal transmission and for diagnosing pathological conditions in the brain. Glutamic acid-selective oligonucleotides were isolated from an ssDNA library using the Capture-SELEX protocol in complex medium. The selection permitted the isolation of an aptamer 1d04 with a dissociation constant of 12 µM. The aptamer sequence was further used in the development of an electrochemical aptamer sensor. For this purpose, a truncated aptamer sequence named glu1 was labelled with a ferrocene redox tag at the 3'-end and immobilized on a gold electrode surface via Au-thiol bonds. Using 6-mercapto-1-hexanol as the backfill, the sensor performance was characterized by alternating current voltammetry. The glu1 aptasensor showed a limit of detection of 0.0013 pM, a wide detection range between 0.01 pM and 1 nM, and good selectivity for glutamate in tenfold diluted human serum. With this enzyme-free aptasensor, the highly selective and sensitive detection of glutamate was demonstrated, which possesses great potential for implementation in microelectrodes and for in vitro as well as in vivo monitoring of neurotransmitter release.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Ácido Glutámico/sangre , Técnicas Biosensibles/métodos , Ácido Glutámico/análisis , Hexanoles/química , Humanos , Límite de Detección , Compuestos de Sulfhidrilo/química
13.
PLoS Comput Biol ; 17(12): e1009713, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34936647

RESUMEN

To study viral evolutionary processes within patients, mathematical models have been instrumental. Yet, the need for stochastic simulations of minority mutant dynamics can pose computational challenges, especially in heterogeneous systems where very large and very small sub-populations coexist. Here, we describe a hybrid stochastic-deterministic algorithm to simulate mutant evolution in large viral populations, such as acute HIV-1 infection, and further include the multiple infection of cells. We demonstrate that the hybrid method can approximate the fully stochastic dynamics with sufficient accuracy at a fraction of the computational time, and quantify evolutionary end points that cannot be expressed by deterministic models, such as the mutant distribution or the probability of mutant existence at a given infected cell population size. We apply this method to study the role of multiple infection and intracellular interactions among different virus strains (such as complementation and interference) for mutant evolution. Multiple infection is predicted to increase the number of mutants at a given infected cell population size, due to a larger number of infection events. We further find that viral complementation can significantly enhance the spread of disadvantageous mutants, but only in select circumstances: it requires the occurrence of direct cell-to-cell transmission through virological synapses, as well as a substantial fitness disadvantage of the mutant, most likely corresponding to defective virus particles. This, however, likely has strong biological consequences because defective viruses can carry genetic diversity that can be incorporated into functional virus genomes via recombination. Through this mechanism, synaptic transmission in HIV might promote virus evolvability.


Asunto(s)
Infecciones por VIH , VIH-1 , Interacciones Huésped-Patógeno/genética , Algoritmos , Células/virología , Biología Computacional , Evolución Molecular , Infecciones por VIH/genética , Infecciones por VIH/transmisión , Infecciones por VIH/virología , VIH-1/genética , VIH-1/patogenicidad , Humanos , Mutación/genética , Procesos Estocásticos , Replicación Viral/genética
14.
Prog Biophys Mol Biol ; 165: 72-79, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428429

RESUMEN

The vulnerabilities of cancer at the cellular and, recently, with the introduction of immunotherapy, at the tissue level, have been exploited with variable success. Evaluating the cancer system vulnerabilities at the organismic level through analysis of network topology and network dynamics can potentially predict novel anti-cancer drug targets directed at the macroscopic cancer networks. Theoretical work analyzing the properties and the vulnerabilities of the multi-scale network of cancer needs to go hand-in-hand with experimental research that uncovers the biological nature of the relevant networks and reveals new targetable vulnerabilities. It is our hope that attacking cancer on different spatial scales, in a concerted integrated approach, may present opportunities for novel ways to prevent treatment resistance.


Asunto(s)
Neoplasias , Biología de Sistemas , Humanos , Neoplasias/tratamiento farmacológico
15.
Epidemics ; 35: 100463, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34000693

RESUMEN

Non-pharmaceutical intervention measures, such as social distancing, have so far been the only means to slow the spread of SARS-CoV-2. In the United States, strict social distancing during the first wave of virus spread has resulted in different types of infection dynamics. In some states, such as New York, extensive infection spread was followed by a pronounced decline of infection levels. In other states, such as California, less infection spread occurred before strict social distancing, and a different pattern was observed. Instead of a pronounced infection decline, a long-lasting plateau is evident, characterized by similar daily new infection levels. Here we show that network models, in which individuals and their social contacts are explicitly tracked, can reproduce the plateau if network connections are cut due to social distancing measures. The reason is that in networks characterized by a 2D spatial structure, infection tends to spread quadratically with time, but as edges are randomly removed, the infection spreads along nearly one-dimensional infection "corridors", resulting in plateau dynamics. Further, we show that plateau dynamics are observed only if interventions start sufficiently early; late intervention leads to a "peak and decay" pattern. Interestingly, the plateau dynamics are predicted to eventually transition into an infection decline phase without any further increase in social distancing measures. Additionally, the models suggest that a second wave becomes significantly less pronounced if social distancing is only relaxed once the dynamics have transitioned to the decline phase. The network models analyzed here allow us to interpret and reconcile different infection dynamics during social distancing observed in various US states.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Trazado de Contacto , Humanos , Modelos Teóricos , Distanciamiento Físico , SARS-CoV-2 , Estados Unidos/epidemiología
16.
Virus Evol ; 7(1): veab026, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34012557

RESUMEN

Recombination has been shown to contribute to human immunodeficiency virus-1 (HIV-1) evolution in vivo, but the underlying dynamics are extremely complex, depending on the nature of the fitness landscapes and of epistatic interactions. A less well-studied determinant of recombinant evolution is the mode of virus transmission in the cell population. HIV-1 can spread by free virus transmission, resulting largely in singly infected cells, and also by direct cell-to-cell transmission, resulting in the simultaneous infection of cells with multiple viruses. We investigate the contribution of these two transmission pathways to recombinant evolution, by applying mathematical models to in vitro experimental data on the growth of fluorescent reporter viruses under static conditions (where both transmission pathways operate), and under gentle shaking conditions, where cell-to-cell transmission is largely inhibited. The parameterized mathematical models are then used to extrapolate the viral evolutionary dynamics beyond the experimental settings. Assuming a fixed basic reproductive ratio of the virus (independent of transmission pathway), we find that recombinant evolution is fastest if virus spread is driven only by cell-to-cell transmission and slows down if both transmission pathways operate. Recombinant evolution is slowest if all virus spread occurs through free virus transmission. This is due to cell-to-cell transmission 1, increasing infection multiplicity; 2, promoting the co-transmission of different virus strains from cell to cell; and 3, increasing the rate at which point mutations are generated as a result of more reverse transcription events. This study further resulted in the estimation of various parameters that characterize these evolutionary processes. For example, we estimate that during cell-to-cell transmission, an average of three viruses successfully integrated into the target cell, which can significantly raise the infection multiplicity compared to free virus transmission. In general, our study points towards the importance of infection multiplicity and cell-to-cell transmission for HIV evolution.

17.
J R Soc Interface ; 18(176): 20200916, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33784886

RESUMEN

Epidemiological data about SARS-CoV-2 spread indicate that the virus is not transmitted uniformly in the population. The transmission tends to be more effective in select settings that involve exposure to relatively high viral dose, such as in crowded indoor settings, assisted living facilities, prisons or food processing plants. To explore the effect on infection dynamics, we describe a new mathematical model where transmission can occur (i) in the community at large, characterized by low-dose exposure and mostly mild disease, and (ii) in so-called transmission hot zones, characterized by high-dose exposure that can be associated with more severe disease. The model yields different types of epidemiological dynamics, depending on the relative importance of hot zone and community transmission. Interesting dynamics occur if the rate of virus release/deposition from severely infected people is larger than that of mildly infected individuals. Under this assumption, we find that successful infection spread can hinge upon high-dose hot zone transmission, yet the majority of infections are predicted to occur in the community at large with mild disease. In this regime, residual hot zone transmission can account for continued virus spread during community lockdowns, and the suppression of hot zones after community interventions are relaxed can cause a prolonged lack of infection resurgence following the reopening of society. This gives rise to the notion that targeted interventions specifically reducing virus transmission in the hot zones have the potential to suppress overall infection spread, including in the community at large. Epidemiological trends in the USA and Europe are interpreted in light of this model.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Modelos Biológicos , Pandemias , SARS-CoV-2 , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/virología , Simulación por Computador , Humanos , Conceptos Matemáticos , Pandemias/prevención & control , Pandemias/estadística & datos numéricos , Cuarentena , Carga Viral/estadística & datos numéricos
18.
J Theor Biol ; 509: 110499, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33130064

RESUMEN

While resistance mutations are often implicated in the failure of cancer therapy, lack of response also occurs without such mutants. In bladder cancer mouse xenografts, repeated chemotherapy cycles have resulted in cancer stem cell (CSC) enrichment, and consequent loss of therapy response due to the reduced susceptibility of CSCs to drugs. A particular feedback loop present in the xenografts has been shown to promote CSC enrichment in this system. Yet, many other regulatory loops might also be operational and might promote CSC enrichment. Their identification is central to improving therapy response. Here, we perform a comprehensive mathematical analysis to define what types of regulatory feedback loops can and cannot contribute to CSC enrichment, providing guidance to the experimental identification of feedback molecules. We derive a formula that reveals whether or not the cell population experiences CSC enrichment over time, based on the properties of the feedback. We find that negative feedback on the CSC division rate or positive feedback on differentiated cell death rate can lead to CSC enrichment. Further, the feedback mediators that achieve CSC enrichment can be secreted by either CSCs or by more differentiated cells. The extent of enrichment is determined by the CSC death rate, the CSC self-renewal probability, and by feedback strength. Defining these general characteristics of feedback loops can guide the experimental screening for and identification of feedback mediators that can promote CSC enrichment in bladder cancer and potentially other tumors. This can help understand and overcome the phenomenon of CSC-based therapy resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Animales , Diferenciación Celular , Línea Celular Tumoral , Retroalimentación , Ratones , Células Madre Neoplásicas
19.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233573

RESUMEN

Aptamers are nucleic acid ligands that bind specifically to a target of interest. Aptamers have gained in popularity due to their high potential for different applications in analysis, diagnostics, and therapeutics. The procedure called systematic evolution of ligands by exponential enrichment (SELEX) is used for aptamer isolation from large nucleic acid combinatorial libraries. The huge number of unique sequences implemented in the in vitro evolution in the SELEX process imposes the necessity of performing extensive sequencing of the selected nucleic acid pools. High-throughput sequencing (HTS) meets this demand of SELEX. Analysis of the data obtained from sequencing of the libraries produced during and after aptamer isolation provides an informative basis for precise aptamer identification and for examining the structure and function of nucleic acid ligands. This review discusses the technical aspects and the potential of the integration of HTS with SELEX.


Asunto(s)
Aptámeros de Nucleótidos/análisis , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ácidos Nucleicos/genética , Técnica SELEX de Producción de Aptámeros/instrumentación , Aptámeros de Nucleótidos/síntesis química , Aptámeros de Nucleótidos/genética , Secuencia de Bases , Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Humanos , Ligandos , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Medicina de Precisión/métodos
20.
medRxiv ; 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33052356

RESUMEN

Epidemiological data on the spread of SARS-CoV-2 in the absence and presence of various non-pharmaceutical interventions indicate that the virus is not transmitted uniformly in the population. Transmission tends to be more effective in select settings that involve exposure to relatively high viral dose, such as in crowded indoor settings, assisted living facilities, prisons, or food processing plants. To explore the effect on infection dynamics, we describe a new mathematical model where transmission can occur (i) in the community at large, characterized by low dose exposure and mostly mild disease, and (ii) in so called transmission hot zones, characterized by high dose exposure that can be associated with more severe disease. Interestingly, we find that successful infection spread can hinge upon high-dose hot zone transmission, yet the majority of infections are predicted to occur in the community at large with mild disease. This gives rise to the prediction that targeted interventions that specifically reduce virus transmission in the hot zones (but not in the community at large) have the potential to suppress overall infection spread, including in the community at large. The model can further reconcile seemingly contradicting epidemiological observations. While in some locations like California, strict stay-home orders failed to significantly reduce infection prevalence, in other locations, such as New York and several European countries, stay-home orders lead to a pronounced fall in infection levels, which remained suppressed for some months after re-opening of society. Differences in hot zone transmission levels during and after social distancing interventions can account for these diverging infection patterns. These modeling results warrant further epidemiological investigations into the role of high dose hot zone transmission for the maintenance of SARS-CoV-2 spread.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...