Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
EMBO J ; 40(2): e104712, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33346378

RESUMEN

Apical constriction is critical for epithelial morphogenesis, including neural tube formation. Vertebrate apical constriction is induced by di-phosphorylated myosin light chain (ppMLC)-driven contraction of actomyosin-based circumferential rings (CRs), also known as perijunctional actomyosin rings, around apical junctional complexes (AJCs), mainly consisting of tight junctions (TJs) and adherens junctions (AJs). Here, we revealed a ppMLC-triggered system at TJ-associated CRs for vertebrate apical constriction involving microtubules, LUZP1, and myosin phosphatase. We first identified LUZP1 via unbiased screening of microtubule-associated proteins in the AJC-enriched fraction. In cultured epithelial cells, LUZP1 was found localized at TJ-, but not at AJ-, associated CRs, and LUZP1 knockout resulted in apical constriction defects with a significant reduction in ppMLC levels within CRs. A series of assays revealed that ppMLC promotes the recruitment of LUZP1 to TJ-associated CRs, where LUZP1 spatiotemporally inhibits myosin phosphatase in a microtubule-facilitated manner. Our results uncovered a hitherto unknown microtubule-LUZP1 association at TJ-associated CRs that inhibits myosin phosphatase, contributing significantly to the understanding of vertebrate apical constriction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Microtúbulos/metabolismo , Uniones Estrechas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Uniones Adherentes/metabolismo , Animales , Línea Celular , Pollos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Miosinas/metabolismo , Células Sf9
2.
J Biol Chem ; 294(15): 6062-6072, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30739083

RESUMEN

Kinetic simulation is a useful approach for elucidating complex cell-signaling systems. The numerical simulations required for kinetic modeling in live cells critically require parameters such as protein concentrations and dissociation constants (Kd ). However, only a limited number of parameters have been measured experimentally in living cells. Here we describe an approach for quantifying the concentration and Kd of endogenous proteins at the single-cell level with CRISPR/Cas9-mediated knock-in and fluorescence cross-correlation spectroscopy. First, the mEGFP gene was knocked in at the end of the mitogen-activated protein kinase 1 (MAPK1) gene, encoding extracellular signal-regulated kinase 2 (ERK2), through homology-directed repair or microhomology-mediated end joining. Next, the HaloTag gene was knocked in at the end of the ribosomal S6 kinase 2 (RSK2) gene. We then used fluorescence correlation spectroscopy to measure the protein concentrations of endogenous ERK2-mEGFP and RSK2-HaloTag fusion constructs in living cells, revealing substantial heterogeneities. Moreover, fluorescence cross-correlation spectroscopy analyses revealed temporal changes in the apparent Kd values of the binding between ERK2-mEGFP and RSK2-HaloTag in response to epidermal growth factor stimulation. Our approach presented here provides a robust and efficient method for quantifying endogenous protein concentrations and dissociation constants in living cells.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Sistemas CRISPR-Cas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Espectrometría de Fluorescencia/métodos
3.
Cell Struct Funct ; 43(1): 61-74, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29553079

RESUMEN

Protein kinases play pivotal roles in intracellular signal transduction, and dysregulation of kinases leads to pathological results such as malignant tumors. Kinase activity has hitherto been measured by biochemical methods such as in vitro phosphorylation assay and western blotting. However, these methods are less useful to explore spatial and temporal changes in kinase activity and its cell-to-cell variation. Recent advances in fluorescent proteins and live-cell imaging techniques enable us to visualize kinase activity in living cells with high spatial and temporal resolutions. Several genetically encoded kinase activity reporters, which are based on the modes of action of kinase activation and phosphorylation, are currently available. These reporters are classified into single-fluorophore kinase activity reporters and Förster (or fluorescence) resonance energy transfer (FRET)-based kinase activity reporters. Here, we introduce the principles of genetically encoded kinase activity reporters, and discuss the advantages and disadvantages of these reporters.Key words: kinase, FRET, phosphorylation, KTR.


Asunto(s)
Genes Reporteros , Microscopía Fluorescente , Proteínas Quinasas/metabolismo , Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Quinasas/genética
4.
J Fluoresc ; 27(1): 399-405, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27796627

RESUMEN

Nitric oxide (NO) is an important gaseous molecule involved in many physiological and pathophysiological processes, including the regulation of G protein-coupled receptors (GPCRs). Here, we report the development of a high-affinity method to detect NO using soluble guanylate cyclase beta1 subunit fused to Venus, a variant of yellow fluorescent protein (sGC-Venus). We measured the fluorescence intensity of sGC-Venus with and without an NO donor using purified probes. At 560 nm emission, the fluorescence intensity of sGC-Venus at 405 nm excitation was increased by approximately 2.5-fold by the NO donor, but the fluorescence intensities of sGC-Venus excited by other wavelengths showed much less of an increase or no significant increase. To measure NO in living cells, the fluorescence intensity of sGC-Venus at 405 nm excitation was normalized to that at 488 nm excitation because it showed no significant difference with or without the NO donor. In HEK293 cells overexpressing the angiotensin II receptor type 1 (AT1 receptor), the production of NO induced by activation of the AT1 receptor was detected using sGC-Venus. These data indicate that sGC-Venus will be a useful tool for visualizing intracellular NO in living cells and that NO might be a common tool to regulate GPCRs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Luminiscentes/metabolismo , Óxido Nítrico/análisis , Receptor de Angiotensina Tipo 1/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Proteínas Bacterianas/genética , Fluorescencia , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Receptor de Angiotensina Tipo 1/genética , Proteínas Recombinantes de Fusión/genética , Guanilil Ciclasa Soluble/genética
5.
Sci Rep ; 5: 13283, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26290434

RESUMEN

Biosensors based on the principle of Förster (or fluorescence) resonance energy transfer (FRET) have been developed to visualize spatio-temporal dynamics of signalling molecules in living cells. Many of them adopt a backbone of intramolecular FRET biosensor with a cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as donor and acceptor, respectively. However, there remains the difficulty of establishing cells stably expressing FRET biosensors with a YFP and CFP pair by lentiviral or retroviral gene transfer, due to the high incidence of recombination between YFP and CFP genes. To address this, we examined the effects of codon-diversification of YFP on the recombination of FRET biosensors introduced by lentivirus or retrovirus. The YFP gene that was fully codon-optimized to E.coli evaded the recombination in lentiviral or retroviral gene transfer, but the partially codon-diversified YFP did not. Further, the length of spacer between YFP and CFP genes clearly affected recombination efficiency, suggesting that the intramolecular template switching occurred in the reverse-transcription process. The simple mathematical model reproduced the experimental data sufficiently, yielding a recombination rate of 0.002-0.005 per base. Together, these results show that the codon-diversified YFP is a useful tool for expressing FRET biosensors by lentiviral or retroviral gene transfer.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes/metabolismo , Lentivirus/metabolismo , Proteínas Luminiscentes/metabolismo , Recombinación Genética , Retroviridae/metabolismo , Codón/genética , Simulación por Computador , Vectores Genéticos/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Teóricos , Reproducibilidad de los Resultados , Moldes Genéticos
6.
PLoS One ; 9(7): e102813, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25032824

RESUMEN

Acute aortic dissection is the most common life-threatening vascular disease, with sudden onset of severe pain and a high fatality rate. Clarifying the detailed mechanism for aortic dissection is of great significance for establishing effective pharmacotherapy for this high mortality disease. In the present study, we evaluated the influence of biomechanical stretch, which mimics an acute rise in blood pressure using an experimental apparatus of stretching loads in vitro, on rat aortic smooth muscle cell (RASMC) death. Then, we examined the effects of azelnidipine and mitogen-activated protein kinase inhibitors on mechanical stretch-induced RASMC death. The major findings of the present study are as follows: (1) cyclic mechanical stretch on RASMC caused cell death in a time-dependent manner up to 4 h; (2) cyclic mechanical stretch on RASMC induced c-Jun N-terminal kinase (JNK) and p38 activation with peaks at 10 min; (3) azelnidipine inhibited RASMC death in a concentration-dependent manner as well as inhibited JNK and p38 activation by mechanical stretch; and (4) SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor) protected against stretch-induced RASMC death; (5) Antioxidants, diphenylene iodonium and tempol failed to inhibit stretch-induced RASMC death. On the basis of the above findings, we propose a possible mechanism where an acute rise in blood pressure increases biomechanical stress on the arterial walls, which induces RASMC death, and thus, may lead to aortic dissection. Azelnidipine may be used as a pharmacotherapeutic agent for prevention of aortic dissection independent of its blood pressure lowering effect.


Asunto(s)
Aorta/efectos de los fármacos , Ácido Azetidinocarboxílico/análogos & derivados , Dihidropiridinas/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Animales , Antracenos/farmacología , Antioxidantes/farmacología , Aorta/metabolismo , Ácido Azetidinocarboxílico/farmacología , Presión Sanguínea/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Compuestos Onio/farmacología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Sci Rep ; 3: 2202, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23857542

RESUMEN

Parkin, a ubiquitin E3 ligase of the ring between ring fingers family, has been implicated in mitochondrial quality control. A series of recent reports have suggested that the recruitment of parkin is regulated by phosphorylation. However, the molecular mechanism that activates parkin to induce mitochondrial degradation is not well understood. Here, and in contrast to previous reports that S-nitrosylation of parkin is exclusively inhibitory, we identify a previously unrecognized site of S-nitrosylation in parkin (Cys323) that induces mitochondrial degradation. We demonstrate that endogenous S-nitrosylation of parkin is in fact responsible for activation of its E3 ligase activity to induce aggregation and degradation. We further demonstrate that mitochondrial uncoupling agents result in denitrosylation of parkin, and that prevention of denitrosylation restores mitochondrial degradation. Our data indicates that NO both positive effects on mitochondrial quality control, and suggest that targeted S-nitrosylation could provide a novel therapeutic strategy against Parkinson's disease.


Asunto(s)
Mitocondrias/metabolismo , Mitofagia , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Cisteína/metabolismo , Activación Enzimática , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Pez Cebra
8.
Proteomics ; 12(12): 2024-35, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22623366

RESUMEN

S-Nitrosoglutathione reductase (GSNOR) is a key regulator of protein S-nitrosylation, the covalent modification of cysteine residues by nitric oxide that can affect activities of many proteins. We recently discovered that excessive S-nitrosylation from GSNOR deficiency in mice under inflammation inactivates the key DNA repair protein O(6) -alkylguanine-DNA alkyltransferase and promotes both spontaneous and carcinogen-induced hepatocellular carcinoma. To explore further the mechanism of tumorigenesis due to GSNOR deficiency, we compared the protein expression profiles in the livers of wild-type and GSNOR-deficient (GSNOR(-/-) ) mice that were challenged with lipopolysaccharide to induce inflammation and expression of inducible nitric oxide synthase (iNOS). Two-dimensional difference gel electrophoresis analysis identified 38 protein spots of significantly increased intensity and 31 protein spots of significantly decreased intensity in the GSNOR(-/-) mice compared to those in the wild-type mice. We subsequently identified 19 upregulated and 19 downregulated proteins in GSNOR(-/-) mice using mass spectrometry. Immunoblot analysis confirmed in GSNOR(-/-) mice a large increase in the expression of the pro-inflammatory mediator S100A9, a protein previously implicated in human liver carcinogenesis. We also found a decrease in the expression of multiple members of the protein disulfide-isomerase (PDI) family and an alteration in the expression pattern of the endoplasmic reticulum (ER) chaperones in GSNOR(-/-) mice. Furthermore, altered expression of these proteins from GSNOR deficiency was prevented in mice lacking both GSNOR and iNOS. In addition, we detected S-nitrosylation of two members of the PDI protein family. These results suggest that S-nitrosylation resulting from GSNOR deficiency may promote carcinogenesis under inflammatory conditions in part through the disruption of inflammatory and ER stress responses.


Asunto(s)
Glutatión Reductasa/metabolismo , Lipopolisacáridos/toxicidad , Hígado/metabolismo , Proteoma/metabolismo , Alcohol Deshidrogenasa , Animales , Western Blotting , Electroforesis en Gel Bidimensional , Estrés del Retículo Endoplásmico/genética , Femenino , Glutatión Reductasa/genética , Hígado/química , Hígado/efectos de los fármacos , Hígado/enzimología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Proteína Disulfuro Isomerasas/metabolismo , Proteoma/química , Proteoma/genética , Proteómica
9.
Proteome Sci ; 10(1): 74, 2012 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-23273257

RESUMEN

BACKGROUND: Nitric oxide (NO) mediates its function through the direct modification of various cellular targets. S-nitrosylation is a post-translational modification of cysteine residues by NO that regulates protein function. Recently, an imbalance of S-nitrosylation has also been linked to neurodegeneration through the impairment of pro-survival proteins by S-nitrosylation. RESULTS: In the present study, we used two-dimensional gel electrophoresis in conjunction with the modified biotin switch assay for protein S-nitrosothiols using resin-assisted capture (SNO-RAC) to identify proteins that are S-nitrosylated more intensively in neuroblastoma cells treated with a mitochondrial complex I inhibitor, 1-methyl-4-phenylpyridinium (MPP+). We identified 14 proteins for which S-nitrosylation was upregulated and seven proteins for which it was downregulated in MPP+-treated neuroblastoma cells. Immunoblot analysis following SNO-RAC confirmed a large increase in the S-nitrosylation of esterase D (ESD), serine-threonine kinase receptor-associated protein (STRAP) and T-complex protein 1 subunit γ (TCP-1 γ) in MPP+-treated neuroblastoma cells, whereas S-nitrosylation of thioredoxin domain-containing protein 5 precursor (ERp46) was decreased. CONCLUSIONS: These results suggest that S-nitrosylation resulting from mitochondrial dysfunction can compromise neuronal survival through altering multiple signal transduction pathways and might be a potential therapeutic target for neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA