Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36778449

RESUMEN

Importance: Artificial intelligence (AI) applications in health care have been effective in many areas of medicine, but they are often trained for a single task using labeled data, making deployment and generalizability challenging. Whether a general-purpose AI language model can perform diagnosis and triage is unknown. Objective: Compare the general-purpose Generative Pre-trained Transformer 3 (GPT-3) AI model's diagnostic and triage performance to attending physicians and lay adults who use the Internet. Design: We compared the accuracy of GPT-3's diagnostic and triage ability for 48 validated case vignettes of both common (e.g., viral illness) and severe (e.g., heart attack) conditions to lay people and practicing physicians. Finally, we examined how well calibrated GPT-3's confidence was for diagnosis and triage. Setting and Participants: The GPT-3 model, a nationally representative sample of lay people, and practicing physicians. Exposure: Validated case vignettes (<60 words; <6th grade reading level). Main Outcomes and Measures: Correct diagnosis, correct triage. Results: Among all cases, GPT-3 replied with the correct diagnosis in its top 3 for 88% (95% CI, 75% to 94%) of cases, compared to 54% (95% CI, 53% to 55%) for lay individuals (p<0.001) and 96% (95% CI, 94% to 97%) for physicians (p=0.0354). GPT-3 triaged (71% correct; 95% CI, 57% to 82%) similarly to lay individuals (74%; 95% CI, 73% to 75%; p=0.73); both were significantly worse than physicians (91%; 95% CI, 89% to 93%; p<0.001). As measured by the Brier score, GPT-3 confidence in its top prediction was reasonably well-calibrated for diagnosis (Brier score = 0.18) and triage (Brier score = 0.22). Conclusions and Relevance: A general-purpose AI language model without any content-specific training could perform diagnosis at levels close to, but below physicians and better than lay individuals. The model was performed less well on triage, where its performance was closer to that of lay individuals.

3.
Drug Saf ; 45(5): 477-491, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35579812

RESUMEN

INTRODUCTION: Artificial intelligence based on machine learning has made large advancements in many fields of science and medicine but its impact on pharmacovigilance is yet unclear. OBJECTIVE: The present study conducted a scoping review of the use of artificial intelligence based on machine learning to understand how it is used for pharmacovigilance tasks, characterize differences with other fields, and identify opportunities to improve pharmacovigilance through the use of machine learning. DESIGN: The PubMed, Embase, Web of Science, and IEEE Xplore databases were searched to identify articles pertaining to the use of machine learning in pharmacovigilance published from the year 2000 to September 2021. After manual screening of 7744 abstracts, a total of 393 papers met the inclusion criteria for further analysis. Extraction of key data on study design, data sources, sample size, and machine learning methodology was performed. Studies with the characteristics of good machine learning practice were defined and manual review focused on identifying studies that fulfilled these criteria and results that showed promise. RESULTS: The majority of studies (53%) were focused on detecting safety signals using traditional statistical methods. Of the studies that used more recent machine learning methods, 61% used off-the-shelf techniques with minor modifications. Temporal analysis revealed that newer methods such as deep learning have shown increased use in recent years. We found only 42 studies (10%) that reflect current best practices and trends in machine learning. In the subset of 154 papers that focused on data intake and ingestion, 30 (19%) were found to incorporate the same best practices. CONCLUSION: Advances from artificial intelligence have yet to fully penetrate pharmacovigilance, although recent studies show signs that this may be changing.


Asunto(s)
Inteligencia Artificial , Farmacovigilancia , Humanos , Aprendizaje Automático
4.
Entropy (Basel) ; 23(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34945914

RESUMEN

Uncertainty quantification for complex deep learning models is increasingly important as these techniques see growing use in high-stakes, real-world settings. Currently, the quality of a model's uncertainty is evaluated using point-prediction metrics, such as the negative log-likelihood (NLL), expected calibration error (ECE) or the Brier score on held-out data. Marginal coverage of prediction intervals or sets, a well-known concept in the statistical literature, is an intuitive alternative to these metrics but has yet to be systematically studied for many popular uncertainty quantification techniques for deep learning models. With marginal coverage and the complementary notion of the width of a prediction interval, downstream users of deployed machine learning models can better understand uncertainty quantification both on a global dataset level and on a per-sample basis. In this study, we provide the first large-scale evaluation of the empirical frequentist coverage properties of well-known uncertainty quantification techniques on a suite of regression and classification tasks. We find that, in general, some methods do achieve desirable coverage properties on in distribution samples, but that coverage is not maintained on out-of-distribution data. Our results demonstrate the failings of current uncertainty quantification techniques as dataset shift increases and reinforce coverage as an important metric in developing models for real-world applications.

5.
NPJ Digit Med ; 4(1): 4, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402680

RESUMEN

There is great excitement that medical artificial intelligence (AI) based on machine learning (ML) can be used to improve decision making at the patient level in a variety of healthcare settings. However, the quantification and communication of uncertainty for individual predictions is often neglected even though uncertainty estimates could lead to more principled decision-making and enable machine learning models to automatically or semi-automatically abstain on samples for which there is high uncertainty. In this article, we provide an overview of different approaches to uncertainty quantification and abstention for machine learning and highlight how these techniques could improve the safety and reliability of current ML systems being used in healthcare settings. Effective quantification and communication of uncertainty could help to engender trust with healthcare workers, while providing safeguards against known failure modes of current machine learning approaches. As machine learning becomes further integrated into healthcare environments, the ability to say "I'm not sure" or "I don't know" when uncertain is a necessary capability to enable safe clinical deployment.

6.
Pac Symp Biocomput ; 25: 295-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31797605

RESUMEN

Word embeddings are a popular approach to unsupervised learning of word relationships that are widely used in natural language processing. In this article, we present a new set of embeddings for medical concepts learned using an extremely large collection of multimodal medical data. Leaning on recent theoretical insights, we demonstrate how an insurance claims database of 60 million members, a collection of 20 million clinical notes, and 1.7 million full text biomedical journal articles can be combined to embed concepts into a common space, resulting in the largest ever set of embeddings for 108,477 medical concepts. To evaluate our approach, we present a new benchmark methodology based on statistical power specifically designed to test embeddings of medical concepts. Our approach, called cui2vec, attains state-of-the-art performance relative to previous methods in most instances. Finally, we provide a downloadable set of pre-trained embeddings for other researchers to use, as well as an online tool for interactive exploration of the cui2vec embeddings.


Asunto(s)
Biología Computacional , Procesamiento de Lenguaje Natural , Bases de Datos Factuales , Humanos
7.
Pac Symp Biocomput ; 25: 379-390, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31797612

RESUMEN

We introduce a Unified Disentanglement Network (UFDN) trained on The Cancer Genome Atlas (TCGA), which we refer to as UFDN-TCGA. We demonstrate that UFDN-TCGA learns a biologically relevant, low-dimensional latent space of high-dimensional gene expression data by applying our network to two classification tasks of cancer status and cancer type. UFDN-TCGA performs comparably to random forest methods. The UFDN allows for continuous, partial interpolation between distinct cancer types. Furthermore, we perform an analysis of differentially expressed genes between skin cutaneous melanoma (SKCM) samples and the same samples interpolated into glioblastoma (GBM). We demonstrate that our interpolations consist of relevant metagenes that recapitulate known glioblastoma mechanisms.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Melanoma , Neoplasias Cutáneas , Biología Computacional , Glioblastoma/genética , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética
8.
PLoS One ; 12(6): e0179020, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28617822

RESUMEN

Genetic variants of ESR1 have been implicated in multiple diseases, including behavioral disorders, but causative variants remain uncertain. We have searched for regulatory variants affecting ESR1 expression in human brain, measuring allelic ESR1 mRNA expression in human brain tissues with marker SNPs in exon4 representing ESR1-008 (or ESRα-36), and in the 3'UTR of ESR1-203, two main ESR1 isoforms in brain. In prefrontal cortex from subjects with bipolar disorder, schizophrenia, and controls (n = 35 each; Stanley Foundation brain bank), allelic ESR1 mRNA ratios deviated from unity up to tenfold at the exon4 marker SNP, with large allelic ratios observed primarily in bipolar and schizophrenic subjects. SNP scanning and targeted sequencing identified rs2144025, associated with large allelic mRNA ratios (p = 1.6E10-6). Moreover, rs2144025 was significantly associated with ESR1 mRNA levels in the Brain eQTL Almanac and in brain regions in the Genotype-Tissue Expression project. In four GWAS cohorts, rs2104425 was significantly associated with behavioral traits, including: hypomanic episodes in female bipolar disorder subjects (GAIN bipolar disorder study; p = 0.0004), comorbid psychological symptoms in both males and females with attention deficit hyperactivity disorder (GAIN ADHD, p = 0.00002), psychological diagnoses in female children (eMERGE study of childhood health, subject age ≥9, p = 0.0009), and traits in schizophrenia (e.g., grandiose delusions, GAIN schizophrenia, p = 0.0004). The first common ESR1 variant (MAF 12-33% across races) linked to regulatory functions, rs2144025 appears conditionally to affect ESR1 mRNA expression in the brain and modulate traits in behavioral disorders.


Asunto(s)
Encéfalo/metabolismo , Receptor alfa de Estrógeno/genética , Trastornos Mentales/genética , Polimorfismo de Nucleótido Simple , Isoformas de ARN/metabolismo , Adulto , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Encéfalo/patología , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genética Conductual/métodos , Humanos , Masculino , Trastornos Mentales/metabolismo , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Isoformas de ARN/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...