Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 297: 120716, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955254

RESUMEN

MAO-A catalyzes the oxidative degradation of monoamines and is thus implicated in sex-specific neuroplastic processes that influence gray matter (GM) density (GMD) and microstructure (GMM). Given the exact monitoring of plasma hormone levels and sex steroid intake, transgender individuals undergoing gender-affirming hormone therapy (GHT) represent a valuable cohort to potentially investigate sex steroid-induced changes of GM and concomitant MAO-A density. Here, we investigated the effects of GHT over a median time period of 4.5 months on GMD and GMM as well as MAO-A distribution volume. To this end, 20 cisgender women, 11 cisgender men, 20 transgender women and 10 transgender men underwent two MRI scans in a longitudinal design. PET scans using [11C]harmine were performed before each MRI session in a subset of 35 individuals. GM changes determined by diffusion weighted imaging (DWI) metrics for GMM and voxel based morphometry (VBM) for GMD were estimated using repeated measures ANOVA. Regions showing significant changes of both GMM and GMD were used for the subsequent analysis of MAO-A density. These involved the fusiform gyrus, rolandic operculum, inferior occipital cortex, middle and anterior cingulum, bilateral insula, cerebellum and the lingual gyrus (post-hoc tests: pFWE+Bonferroni < 0.025). In terms of MAO-A distribution volume, no significant effects were found. Additionally, the sexual desire inventory (SDI) was applied to assess GHT-induced changes in sexual desire, showing an increase of SDI scores among transgender men. Changes in the GMD of the bilateral insula showed a moderate correlation to SDI scores (rho = - 0.62, pBonferroni = 0.047). The present results are indicative of a reliable influence of gender-affirming hormone therapy on 1) GMD and GMM following an interregional pattern and 2) sexual desire specifically among transgender men.

2.
Psychoneuroendocrinology ; 138: 105683, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35176535

RESUMEN

Sex hormones affect the GABAergic and glutamatergic neurotransmitter system as demonstrated in animal studies. However, human research has mostly been correlational in nature. Here, we aimed at substantiating causal interpretations of the interaction between sex hormones and neurotransmitter function by using magnetic resonance spectroscopy imaging (MRSI) to study the effect of gender-affirming hormone treatment (GHT) in transgender individuals. Fifteen trans men (TM) with a DSM-5 diagnosis of gender dysphoria, undergoing GHT, and 15 age-matched cisgender women (CW), receiving no therapy, underwent MRSI before and after at least 12 weeks. Additionally, sex differences in neurotransmitter levels were evaluated in an independent sample of 80 cisgender men and 79 cisgender women. Mean GABA+ (combination of GABA and macromolecules) and Glx (combination of glutamate and glutamine) ratios to total creatine (GABA+/tCr, Glx/tCr) were calculated in five predefined regions-of-interest (hippocampus, insula, pallidum, putamen and thalamus). Linear mixed models analysis revealed a significant measurement by gender identity effect (pcorr. = 0.048) for GABA+/tCr ratios in the hippocampus, with the TM cohort showing decreased GABA+/tCr levels after GHT compared to CW. Moreover, analysis of covariance showed a significant sex difference in insula GABA+/tCr ratios (pcorr. = 0.049), indicating elevated GABA levels in cisgender women compared to cisgender men. Our study demonstrates GHT treatment-induced GABA+/tCr reductions in the hippocampus, indicating hormone receptor activation on GABAergic cells and testosterone-induced neuroplastic processes within the hippocampus. Moreover, elevated GABA levels in the female compared to the male insula highlight the importance of including sex as factor in future MRS studies. DATA AVAILABILITY STATEMENT: Due to data protection laws processed data is available from the authors upon reasonable request. Please contact rupert.lanzenberger@meduniwien.ac.at with any questions or requests.


Asunto(s)
Ácido Glutámico , Personas Transgénero , Encéfalo/patología , Femenino , Identidad de Género , Hormonas Esteroides Gonadales , Humanos , Masculino , Neurotransmisores , Receptores de Antígenos de Linfocitos T , Testosterona , Ácido gamma-Aminobutírico
3.
Neuroimage ; 232: 117913, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33657450

RESUMEN

Impaired cognitive flexibility represents a widespread symptom in psychiatric disorders, including major depressive disorder (MDD), a disease, characterized by an imbalance of neurotransmitter concentrations. While memory formation is mostly associated with glutamate, also gamma-Aminobutyric acid (GABA) and serotonin show attributions in a complex interplay between neurotransmitter systems. Treatment with selective serotonin reuptake inhibitors (SSRIs) does not solely affect the serotonergic system but shows downstream effects on GABA- and glutamatergic neurotransmission, potentially helping to restore cognitive function via neuroplastic effects. Hence, this study aims to elaborate the effects of associative relearning and SSRI treatment on GABAergic and glutamatergic function within and between five brain regions using magnetic resonance spectroscopy imaging (MRSI). In this study, healthy subjects were randomized into four groups which underwent three weeks of an associative relearning paradigm, with or without emotional connotation, under SSRI (10mg escitalopram) or placebo administration. MRSI measurements, using a spiral-encoded, 3D-GABA-edited MEGA-LASER sequence at 3T, were performed on the first and last day of relearning. Mean GABA+/tCr (GABA+ = GABA + macromolecules; tCr = total creatine) and Glx/tCr (Glx = glutamate + glutamine) ratios were quantified in a ROI-based approach for the hippocampus, insula, putamen, pallidum and thalamus, using LCModel. A total of 66 subjects ((37 female, mean age ± SD = 25.4±4.7) for Glx/tCr and 58 subjects (32 female, mean age ± SD = 25.1±4.7) for GABA+/tCr were included in the final analysis. A significant measurement by region and treatment (SSRI vs placebo) interaction on Glx/tCr ratios was found (pcor=0.017), with post hoc tests confirming differential effects on hippocampus and thalamus (pcor=0.046). Moreover, treatment by time comparison, for each ROI independently, showed a reduction of hippocampal Glx/tCr ratios after SSRI treatment (puncor=0.033). No significant treatment effects on GABA+/tCr ratios or effects of relearning condition on any neurotransmitter ratio could be found. Here, we showed a significant SSRI- and relearning-driven interaction effect of hippocampal and thalamic Glx/tCr levels, suggesting differential behavior based on different serotonin transporter and receptor densities. Moreover, an indication for Glx/tCr adaptions in the hippocampus after three weeks of SSRI treatment could be revealed. Our findings are in line with animal studies reporting glutamate adaptions in the hippocampus following chronic SSRI intake. Due to the complex interplay of serotonin and hippocampal function, involving multiple serotonin receptor subtypes on glutamatergic cells and GABAergic interneurons, the interpretation of underlying neurobiological actions remains challenging.


Asunto(s)
Aprendizaje por Asociación/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Ácido gamma-Aminobutírico/metabolismo , Adulto , Aprendizaje por Asociación/fisiología , Encéfalo/diagnóstico por imagen , Método Doble Ciego , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Estimulación Luminosa/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...