Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 32: 478-493, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37187708

RESUMEN

APOBEC/AID cytidine deaminases play an important role in innate immunity and antiviral defenses and were shown to suppress hepatitis B virus (HBV) replication by deaminating and destroying the major form of HBV genome, covalently closed circular DNA (cccDNA), without toxicity to the infected cells. However, developing anti-HBV therapeutics based on APOBEC/AID is complicated by the lack of tools for activating and controlling their expression. Here, we developed a CRISPR-activation-based approach (CRISPRa) to induce APOBEC/AID transient overexpression (>4-800,000-fold increase in mRNA levels). Using this new strategy, we were able to control APOBEC/AID expression and monitor their effects on HBV replication, mutation, and cellular toxicity. CRISPRa prominently reduced HBV replication (∼90%-99% decline of viral intermediates), deaminated and destroyed cccDNA, but induced mutagenesis in cancer-related genes. By coupling CRISPRa with attenuated sgRNA technology, we demonstrate that APOBEC/AID activation can be precisely controlled, eliminating off-site mutagenesis in virus-containing cells while preserving prominent antiviral activity. This study untangles the differences in the effects of physiologically expressed APOBEC/AID on HBV replication and cellular genome, provides insights into the molecular mechanisms of HBV cccDNA mutagenesis, repair, and degradation, and, finally, presents a strategy for a tunable control of APOBEC/AID expression and for suppressing HBV replication without toxicity.

2.
Pharmaceutics ; 15(2)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36839856

RESUMEN

Because of their high biocompatibility, biological barrier negotiation, and functionalization properties, biological nanoparticles have been actively investigated for many medical applications. Biological nanoparticles, including natural extracellular vesicles (EVs) and synthetic extracellular vesicle-mimetic nanovesicles (EMNVs), represent novel drug delivery vehicles that can accommodate different payloads. In this study, we investigated the physical, biological, and delivery properties of EVs and EMNVs and analyzed their ability to deliver the chemotherapeutic drug doxorubicin. EMNVs and EVs exhibit similar properties, but EMNVs are more effectively internalized, while EVs show higher intracellular doxorubicin release activity. In addition, these nanotherapeutics were investigated in combination with the FDA-approved drug hydroxychloroquine (HCQ). We demonstrate that HCQ-induced lysosome destabilization and could significantly increase nanoparticle internalization, doxorubicin release, and cytotoxicity. Altogether, these data demonstrate that, from the delivery standpoint in vitro, the internalization of EMNVs and EVs and their payload release were slightly different and both nanotherapeutics had comparable cytotoxic performance. However, the synthesis of EMNVs was significantly faster and cost-effective. In addition, we highlight the benefits of combining biological nanoparticles with the lysosome-destabilizing agent HCQ that increased both the internalization and the cytotoxic properties of the particles.

3.
Emerg Microbes Infect ; 11(1): 2229-2247, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36031930

RESUMEN

Although unprecedented efforts aiming to stop the COVID-19 pandemic have been made over the past two years, SARSCoV-2 virus still continues to cause intolerable health and economical losses. Vaccines are considered the most effective way to prevent infectious diseases, which has been reaffirmed for COVID-19. However, in the context of the continuing virus spread because of insufficient vaccination coverage and emergence of new variants of concern, there is a high demand for vaccination strategy amendment. The ability to elicit protective immunity at the entry gates of infection provided by mucosal vaccination is key to block virus infection and transmission. Therefore, these mucosal vaccines are believed to be a "silver bullet" that could bring the pandemic to an end. Here, we demonstrate that the intranasally delivered Gam-COVID-Vac (Sputnik V) vaccine induced a robust (no less than 180 days) systemic and local immune response in mice. High immunogenic properties of the vaccine were verified in non-human primates (common marmosets) by marked IgG and neutralizing antibody (NtAb) production in blood serum, antigen-specific Tcell proliferation and cytokine release of peripheral blood mononuclear cells accompanied by formation of IgA antibodies in the nasal mucosa. We also demonstrate that Sputnik V vaccine can provide sterilizing immunity in K18-hACE2 transgenic mice exposed to experimental lethal SARS-CoV-2 infection protecting them against severe lung immunopathology and mortality. We believe that intranasal Sputnik V vaccine is a promising novel needle-free mucosal vaccine candidate for primary immunization as well as for revaccination and is worth further clinical investigation.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Citocinas , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina A , Inmunoglobulina G , Leucocitos Mononucleares , Ratones , Pandemias/prevención & control , Primates , SARS-CoV-2/genética
4.
Vaccine ; 40(1): 89-99, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34836660

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) is a major causative agent of acute hepatitis worldwide, prompting continuous HEV vaccine efforts. Vaccine development is hampered by the lack of convenient animal models susceptible to infection with different HEV genotypes. We produced recombinant open reading frame 2 protein (pORF2; p551) of HEV genotype (GT) 3 and assessed its immunogenicity and protectivity against HEV challenge in common marmosets (Callithrix jacchus, CM). METHODS: p551 with consensus sequence corresponding to amino acid residues 110-660 of HEV GT3 pORF2 was expressed in E. coli and purified by affinity chromatography. CMs were immunized intramuscularly with 20 µg of p551 VLPs with alum adjuvant (n = 4) or adjuvant alone (n = 2) at weeks 0, 3, 7 and 19. At week 27, p551-immunized and control animals were challenged with HEV GT1 or GT3 and thereafter longitudinally screened for markers of liver function, anti-HEV IgG and HEV RNA in feces and sera. RESULTS: Purified p551 formed VLPs with particle size of 27.71 ± 2.42 nm. Two immunizations with p551 induced anti-HEV IgG mean titer of 1:1810. Immunized CMs challenged with homologous and heterologous HEV genotype did not develop HEV infection during the follow-up. Control CMs infected with both HEV GT1 and GT3 demonstrated signs of HEV infection with virus shedding and elevation of the levels of liver enzymes. High levels of anti-HEV IgG persisted in vaccinated CMs and control CMs that resolved HEV infection, for up to two years post challenge. CONCLUSIONS: CMs are shown to be a convenient laboratory animal model susceptible to infection with HEV GT1 and GT3. Immunization with HEV GT3 ORF2/p551 triggers potent anti-HEV antibody response protecting CMs from homologous and heterologous HEV challenge. This advances p551 in VLPs as a prototype vaccine against HEV.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Animales , Callithrix , Escherichia coli , Hepatitis E/prevención & control , Hepatitis E/veterinaria , Virus de la Hepatitis E/genética , Inmunización , Desarrollo de Vacunas
5.
Cancers (Basel) ; 13(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467638

RESUMEN

People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect "innocent" bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1.

6.
Vaccines (Basel) ; 8(2)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570805

RESUMEN

Telomerase reverse transcriptase (TERT) is a classic tumor-associated antigen overexpressed in majority of tumors. Several TERT-based cancer vaccines are currently in clinical trials, but immune correlates of their antitumor activity remain largely unknown. Here, we characterized fine specificity and lytic potential of immune response against rat TERT in mice. BALB/c mice were primed with plasmids encoding expression-optimized hemagglutinin-tagged or nontagged TERT or empty vector and boosted with same DNA mixed with plasmid encoding firefly luciferase (Luc DNA). Injections were followed by electroporation. Photon emission from booster sites was assessed by in vivo bioluminescent imaging. Two weeks post boost, mice were sacrificed and assessed for IFN-γ, interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) production by T-cells upon their stimulation with TERT peptides and for anti-TERT antibodies. All TERT DNA-immunized mice developed cellular and antibody response against epitopes at the N-terminus and reverse transcriptase domain (rtTERT) of TERT. Photon emission from mice boosted with TERT/TERT-HA+Luc DNA was 100 times lower than from vector+Luc DNA-boosted controls. Bioluminescence loss correlated with percent of IFN-γ/IL-2/TNF-α producing CD8+ and CD4+ T-cells specific to rtTERT, indicating immune clearance of TERT/Luc-coexpressing cells. We made murine adenocarcinoma 4T1luc2 cells to express rtTERT by lentiviral transduction. Expression of rtTERT significantly reduced the capacity of 4T1luc2 to form tumors and metastasize in mice, while not affecting in vitro growth. Mice which rejected the tumors developed T-cell response against rtTERT and low/no response to the autoepitope of TERT. This advances rtTERT as key component of TERT-based therapeutic vaccines against cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA