Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cryobiology ; 110: 18-23, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36649914

RESUMEN

Rewarming from accidental hypothermia could be complicated by acute cardiac dysfunction but providing supportive pharmacotherapy at low core temperatures is challenging. Several pharmacological strategies aim to improve cardiovascular function by increasing cAMP in cardiomyocytes as well as cAMP and cGMP levels in vascular smooth muscle, but it is not clear what effects temperature has on cellular elimination of cAMP and cGMP. We therefore studied the effects of differential temperatures from normothermia to deep hypothermia (37 °C-20 °C) on cAMP levels in embryonic H9c2 cardiac cells and elimination of cAMP and cGMP by PDE-enzymes and ABC-transporter proteins. Our experiments showed significant elevation of intracellular cAMP in H9c2-cells at 30 °C but not 20 °C. Elimination of both cAMP and cGMP through ABC transport-proteins and PDE-enzymes showed a temperature dependent reduction. Accordingly, the increased cardiomyocyte cAMP-levels during moderate hypothermia appears an effect of preserved production and reduced elimination at 30 °C. This correlates with earlier in vivo findings of a positive inotropic effect of moderate hypothermia.


Asunto(s)
Hipotermia , Humanos , AMP Cíclico/metabolismo , Criopreservación/métodos , Recalentamiento , Miocitos Cardíacos/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/farmacología
2.
Front Physiol ; 13: 960652, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36134333

RESUMEN

Introduction: Using a porcine model of accidental immersion hypothermia and hypothermic cardiac arrest (HCA), the aim of the present study was to compare effects of different rewarming strategies on CPB on need for vascular fluid supply, level of cardiac restitution, and cerebral metabolism and pressures. Materials and Methods: Totally sixteen healthy, anesthetized castrated male pigs were immersion cooled to 20°C to induce HCA, maintained for 75 min and then randomized into two groups: 1) animals receiving CPB rewarming to 30°C followed by immersion rewarming to 36°C (CPB30, n = 8), or 2) animals receiving CPB rewarming to 36°C (CPB36, n = 8). Measurements of cerebral metabolism were collected using a microdialysis catheter. After rewarming to 36°C, surviving animals in both groups were further warmed by immersion to 38°C and observed for 2 h. Results: Survival rate at 2 h after rewarming was 5 out of 8 animals in the CPB30 group, and 8 out of 8 in the CPB36 group. All surviving animals displayed significant acute cardiac dysfunction irrespective of rewarming method. Differences between groups in CPB exposure time or rewarming rate created no differences in need for vascular volume supply, in variables of cerebral metabolism, or in cerebral pressures and blood flow. Conclusion: As 3 out of 8 animals did not survive weaning from CPB at 30°C, early weaning gave no advantages over weaning at 36°C. Further, in surviving animals, the results showed no differences between groups in the need for vascular volume replacement, nor any differences in cerebral blood flow or pressures. Most prominent, after weaning from CPB, was the existence of acute cardiac failure which was responsible for the inability to create an adequate perfusion irrespective of rewarming strategy.

3.
Front Physiol ; 13: 923091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910566

RESUMEN

Introduction: Rewarming from accidental hypothermia is often complicated by hypothermia-induced cardiovascular dysfunction, which could lead to shock. Current guidelines do not recommend any pharmacological treatment at core temperatures below 30°C, due to lack of knowledge. However, previous in vivo studies have shown promising results when using phosphodiesterase 3 (PDE3) inhibitors, which possess the combined effects of supporting cardiac function and alleviating the peripheral vascular resistance through changes in cyclic nucleotide levels. This study therefore aims to investigate whether PDE3 inhibitors milrinone, amrinone, and levosimendan are able to modulate cyclic nucleotide regulation in hypothermic settings. Materials and methods: The effect of PDE3 inhibitors were studied by using recombinant phosphodiesterase enzymes and inverted erythrocyte membranes at six different temperatures-37°C, 34°C, 32°C, 28°C, 24°C, and 20°C- in order to evaluate the degree of enzymatic degradation, as well as measuring cellular efflux of both cAMP and cGMP. The resulting dose-response curves at every temperature were used to calculate IC50 and Ki values. Results: Milrinone IC50 and Ki values for cGMP efflux were significantly lower at 24°C (IC50: 8.62 ± 2.69 µM) and 20°C (IC50: 7.35 ± 3.51 µM), compared to 37°C (IC50: 22.84 ± 1.52 µM). There were no significant changes in IC50 and Ki values for enzymatic breakdown of cAMP and cGMP. Conclusion: Milrinone, amrinone and levosimendan, were all able to suppress enzymatic degradation and inhibit extrusion of cGMP and cAMP below 30°C. Our results show that these drugs have preserved effect on their target molecules during hypothermia, indicating that they could provide an important treatment option for hypothermia-induced cardiac dysfunction.

4.
Front Physiol ; 13: 925292, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755426

RESUMEN

Introduction: Victims of accidental hypothermia in hypothermic cardiac arrest (HCA) may survive with favorable neurologic outcome if early and continuous prehospital cardiopulmonary resuscitation (CPR) is started and continued during evacuation and transport. The efficacy of cerebral autoregulation during hypothermic CPR is largely unknown and is aim of the present experiment. Methods: Anesthetized pigs (n = 8) were surface cooled to HCA at 27°C before 3 h continuous CPR. Central hemodynamics, cerebral O2 delivery (DO2) and uptake (VO2), cerebral blood flow (CBF), and cerebral perfusion pressure (CPP) were determined before cooling, at 32°C and at 27°C, then at 15 min after the start of CPR, and hourly thereafter. To estimate cerebral autoregulation, the static autoregulatory index (sARI), and the CBF/VO2 ratio were determined. Results: After the initial 15-min period of CPR at 27°C, cardiac output (CO) and mean arterial pressure (MAP) were reduced significantly when compared to corresponding values during spontaneous circulation at 27°C (-66.7% and -44.4%, respectively), and remained reduced during the subsequent 3-h period of CPR. During the first 2-h period of CPR at 27°C, blood flow in five different brain areas remained unchanged when compared to the level during spontaneous circulation at 27°C, but after 3 h of CPR blood flow in 2 of the 5 areas was significantly reduced. Cooling to 27°C reduced cerebral DO2 by 67.3% and VO2 by 84.4%. Cerebral VO2 was significantly reduced first after 3 h of CPR. Cerebral DO2 remained unaltered compared to corresponding levels measured during spontaneous circulation at 27°C. Cerebral autoregulation was preserved (sARI > 0.4), at least during the first 2 h of CPR. Interestingly, the CBF/VO2 ratio during spontaneous circulation at 27°C indicated the presence of an affluent cerebral DO2, whereas after CPR, the CBF/VO2 ratio returned to the level of spontaneous circulation at 38°C. Conclusion: Despite a reduced CO, continuous CPR for 3 h at 27°C provided sufficient cerebral DO2 to maintain aerobic metabolism and to preserve cerebral autoregulation during the first 2-h period of CPR. This new information supports early start and continued CPR in accidental hypothermia patients during rescue and transportation for in hospital rewarming.

5.
Front Physiol ; 13: 901908, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574436

RESUMEN

Introduction: Due to functional alterations of blood platelets and coagulation enzymes at low temperatures, excessive bleeding is a well-recognized complication in victims of accidental hypothermia and may present a great clinical challenge. Still, it remains largely unknown if hemostatic function normalizes upon rewarming. The aim of this study was to investigate effects of hypothermia and rewarming on blood coagulation in an intact porcine model. Methods: The animals were randomized to cooling and rewarming (n = 10), or to serve as normothermic, time-matched controls (n = 3). Animals in the hypothermic group were immersion cooled in ice water to 25°C, maintained at 25°C for 1 h, and rewarmed to 38°C (normal temperature in pigs) using warm water. Clotting time was assessed indirectly at different temperatures during cooling and rewarming using a whole blood coagulometer, which measures clotting time at 38°C. Results: Cooling to 25°C led to a significant increase in hemoglobin, hematocrit and red blood cell count, which persisted throughout rewarming. Cooling also caused a transiently decreased white blood cell count that returned to baseline levels upon rewarming. After rewarming from hypothermia, clotting time was significantly shortened compared to pre-hypothermic baseline values. In addition, platelet count was significantly increased. Discussion/Conclusion: We found that clotting time was significantly reduced after rewarming from hypothermia. This may indicate that rewarming from severe hypothermia induces a hypercoagulable state, in which thrombus formation is more likely to occur.

6.
Front Physiol ; 13: 862729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431978

RESUMEN

Introduction: Cooling by cardiopulmonary bypass (CPB) to deep hypothermic cardiac arrest (HCA) for cardiac surgical interventions, followed by CPB-rewarming is performed on a routine basis with relatively low mortality. In contrast, victims of deep accidental hypothermia rewarmed with CPB generally have a much worse prognosis. Thus, we have developed an intact pig model to compare effects on perfusion pressures and global oxygen delivery (DO2) during immersion cooling versus cooling by CPB. Further, we compared the effects of CPB-rewarming between groups, to restitute cardiovascular function, brain blood flow, and brain metabolism. Materials and Methods: Total sixteen healthy, anesthetized juvenile (2-3 months) castrated male pigs were randomized in a prospective, open placebo-controlled experimental study to immersion cooling (IMM c , n = 8), or cooling by CPB (CPB c , n = 8). After 75 minutes of deep HCA in both groups, pigs were rewarmed by CPB. After weaning from CPB surviving animals were observed for 2 h before euthanasia. Results: Survival rates at 2 h after completed rewarming were 4 out of 8 in the IMM c group, and 8 out of 8 in the CPB c group. Compared with the CPB c -group, IMM c animals showed significant reduction in DO2, mean arterial pressure (MAP), cerebral perfusion pressure, and blood flow during cooling below 25°C as well as after weaning from CPB after rewarming. After rewarming, brain blood flow returned to control in CPB c animals only, and brain micro dialysate-data showed a significantly increase in the lactate/pyruvate ratio in IMM c vs. CPB c animals. Conclusion: Our data indicate that, although global O2 consumption was independent of DO2, regional ischemic damage may have taken place during cooling in the brain of IMM c animals below 25°C. The need for prolonged extracorporeal membrane oxygenation (ECMO) should be considered in all victims of accidental hypothermic arrest that cannot be weaned from CPB immediately after rewarming.

7.
Front Physiol ; 12: 763975, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803743

RESUMEN

Background: Diving in cold water is thought to increase the risk of decompression sickness (DCS), especially if the diver is cold during decompression. In this study, we investigated hemodynamic function and DCS risk in an animal model, where cold decompression was followed by rewarming at the surface. Methods: Nine female Sprague Dawley rats had pressure-volume catheters inserted into their left heart ventricle and femoral artery before they were exposed to dry air dives in which their core temperature was normothermic during the bottom phase, cold (35°C) during decompression, and normothermic after the dive. Data from an earlier study were used as controls. The rats were compressed in air to 600kPa, maintained at pressure for 45min, and decompressed at 50kPa/min. Hemodynamic data were recorded before, during, and 60min after decompression. Venous gas bubbles were recorded in the right heart ventricle and pulmonary artery for 60min after the dive. Results and Conclusion: During decompression, cardiac output (CO), and stroke volume (SV) decreased equally in cold rats and controls. CO and SV were temporarily re-established at the surface, before falling again in the cold rats. There was no difference in post-dive venous bubble grades. However, as the post-dive fall in CO and SV could be a sign of gas emboli obstructing the pulmonary circulation, we cannot conclude whether the DCS risk was increased. More sensitive bubble detection methods are needed to elucidate this point.

8.
Front Physiol ; 12: 741241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658927

RESUMEN

Introduction: Previously, we showed that the cardiopulmonary resuscitation (CPR) for hypothermic cardiac arrest (HCA) maintained cardiac output (CO) and mean arterial pressure (MAP) to the same reduced level during normothermia (38°C) vs. hypothermia (27°C). In addition, at 27°C, the CPR for 3-h provided global O2 delivery (DO2) to support aerobic metabolism. The present study investigated if rewarming with closed thoracic lavage induces a perfusing rhythm after 3-h continuous CPR at 27°C. Materials and Methods: Eight male pigs were anesthetized, and immersion-cooled. At 27°C, HCA was electrically induced, CPR was started and continued for a 3-h period. Thereafter, the animals were rewarmed by combining closed thoracic lavage and continued CPR. Organ blood flow was measured using microspheres. Results: After cooling with spontaneous circulation to 27°C, MAP and CO were initially reduced by 37 and 58% from baseline, respectively. By 15 min after the onset of CPR, MAP, and CO were further reduced by 58 and 77% from baseline, respectively, which remained unchanged throughout the rest of the 3-h period of CPR. During CPR at 27°C, DO2 and O2 extraction rate (VO2) fell to critically low levels, but the simultaneous small increase in lactate and a modest reduction in pH, indicated the presence of maintained aerobic metabolism. During rewarming with closed thoracic lavage, all animals displayed ventricular fibrillation, but only one animal could be electro-converted to restore a short-lived perfusing rhythm. Rewarming ended in circulatory collapse in all the animals at 38°C. Conclusion: The CPR for 3-h at 27°C managed to sustain lower levels of CO and MAP sufficient to support global DO2. Rewarming accidental hypothermia patients following prolonged CPR for HCA with closed thoracic lavage is not an alternative to rewarming by extra-corporeal life support as these patients are often in need of massive cardio-pulmonary support during as well as after rewarming.

9.
Sci Rep ; 11(1): 18918, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556695

RESUMEN

We recently documented that cardiopulmonary resuscitation (CPR) generates the same level of cardiac output (CO) and mean arterial pressure (MAP) during both normothermia (38 °C) and hypothermia (27 °C). Furthermore, continuous CPR at 27 °C provides O2 delivery (DO2) to support aerobic metabolism throughout a 3-h period. The aim of the present study was to investigate the effects of extracorporeal membrane oxygenation (ECMO) rewarming to restore DO2 and organ blood flow after prolonged hypothermic cardiac arrest. Eight male pigs were anesthetized and immersion cooled to 27 °C. After induction of hypothermic cardiac arrest, CPR was started and continued for a 3-h period. Thereafter, the animals were rewarmed with ECMO. Organ blood flow was measured using microspheres. After cooling with spontaneous circulation to 27 °C, MAP and CO were initially reduced to 66 and 44% of baseline, respectively. By 15 min after the onset of CPR, there was a further reduction in MAP and CO to 42 and 25% of baseline, respectively, which remained unchanged throughout the rest of 3-h CPR. During CPR, DO2 and O2 uptake (V̇O2) fell to critical low levels, but the simultaneous small increase in lactate and a modest reduction in pH, indicated the presence of maintained aerobic metabolism. Rewarming with ECMO restored MAP, CO, DO2, and blood flow to the heart and to parts of the brain, whereas flow to kidneys, stomach, liver and spleen remained significantly reduced. CPR for 3-h at 27 °C with sustained lower levels of CO and MAP maintained aerobic metabolism sufficient to support DO2. Rewarming with ECMO restores blood flow to the heart and brain, and creates a "shockable" cardiac rhythm. Thus, like continuous CPR, ECMO rewarming plays a crucial role in "the chain of survival" when resuscitating victims of hypothermic cardiac arrest.


Asunto(s)
Reanimación Cardiopulmonar/métodos , Oxigenación por Membrana Extracorpórea , Paro Cardíaco/terapia , Hipotermia/terapia , Recalentamiento/métodos , Animales , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Circulación Cerebrovascular , Circulación Coronaria , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Paro Cardíaco/etiología , Paro Cardíaco/fisiopatología , Humanos , Hipotermia/complicaciones , Hipotermia/fisiopatología , Masculino , Oxígeno/metabolismo , Circulación Renal , Circulación Esplácnica , Sus scrofa
10.
Front Physiol ; 12: 695779, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393818

RESUMEN

INTRODUCTION: Cardiovascular dysfunction is a potentially lethal complication of hypothermia. Due to a knowledge gap, pharmacological interventions are not recommended at core temperatures below 30°C. Yet, further cooling is induced in surgical procedures and survival of accidental hypothermia is reported after rewarming from below 15°C, advocating a need for evidence-based treatment guidelines. In vivo studies have proposed vasodilation and afterload reduction through arteriole smooth muscle cGMP-elevation as a favorable strategy to prevent cardiovascular dysfunction in hypothermia. Further development of treatment guidelines demand information about temperature-dependent changes in pharmacological effects of clinically relevant vasodilators. MATERIALS AND METHODS: Human phosphodiesterase-enzymes and inverted erythrocytes were utilized to evaluate how vasodilators sildenafil and vardenafil affected cellular efflux and enzymatic breakdown of cAMP and cGMP, at 37°C, 34°C, 32°C, 28°C, 24°C, and 20°C. The ability of both drugs to reach their cytosolic site of action was assessed at the same temperatures. IC50- and K i -values were calculated from dose-response curves at all temperatures, to evaluate temperature-dependent effects of both drugs. RESULTS: Both drugs were able to reach the intracellular space at all hypothermic temperatures, with no reduction compared to normothermia. Sildenafil IC50 and K i -values increased during hypothermia for enzymatic breakdown of both cAMP (IC50: 122 ± 18.9 µM at 37°C vs. 269 ± 14.7 µM at 20°C, p < 0.05) and cGMP (IC50: 0.009 ± 0.000 µM at 37°C vs. 0.024 ± 0.004 µM at 32°C, p < 0.05), while no significant changes were detected for vardenafil. Neither of the drugs showed significant hypothermia-induced changes in IC50 and K i- values for inhibition of cellular cAMP and cGMP efflux. CONCLUSION: Sildenafil and particularly vardenafil were ableto inhibit elimination of cGMP down to 20°C. As the cellular effects of these drugs can cause afterload reduction, they show potential in treating cardiovascular dysfunction during hypothermia. As in normothermia, both drugs showed higher selectivity for inhibition of cGMP-elimination than cAMP-elimination at low core temperatures, indicating that risk for cardiotoxic side effects is not increased by hypothermia.

11.
Exp Physiol ; 106(5): 1196-1207, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33728692

RESUMEN

NEW FINDINGS: What is the central question of this study? Detailed guidelines for volume replacement to counteract hypothermia-induced intravascular fluid loss are lacking. Evidence suggests colloids might have beneficial effects compared to crystalloids. Are central haemodynamic function and level of hypothermia-induced calcium overload, as a marker of cardiac injury, restored by fluid substitution during rewarming, and are colloids favourable to crystalloids? What is the main finding and its importance? Infusion with crystalloid or dextran during rewarming abolished post-hypothermic cardiac dysfunction, and partially mitigated myocardial calcium overload. The effects of volume replacement to support haemodynamic function are comparable to those using potent cardio-active drugs. These findings underline the importance of applying intravascular volume replacement to maintain euvolaemia during rewarming. ABSTRACT: Previous research exploring pathophysiological mechanisms underlying circulatory collapse after rewarming victims of severe accidental hypothermia has documented post-hypothermic cardiac dysfunction and hypothermia-induced elevation of intracellular Ca2+ concentration ([Ca2+ ]i ) in myocardial cells. The aim of the present study was to examine if maintaining euvolaemia during rewarming mitigates cardiac dysfunction and/or normalizes elevated myocardial [Ca2+ ]i . A total of 21 male Wistar rats (300 g) were surface cooled to 15°C, then maintained at 15°C for 4 h, and subsequently rewarmed to 37°C. The rats were randomly assigned to one of three groups: (1) non-intervention control (n = 7), (2) dextran treated (i.v. 12 ml/kg dextran 70; n = 7), or (3) crystalloid treated (24 ml/kg 0.9% i.v. saline; n = 7). Infusions occurred during the first 30 min of rewarming. Arterial blood pressure, stroke volume (SV), cardiac output (CO), contractility (dP/dtmax ) and blood gas changes were measured. Post-hypothermic changes in [Ca2+ ]i were measured using the method of radiolabelled Ca2+ (45 Ca2+ ). Untreated controls displayed post-hypothermic cardiac dysfunction with significantly reduced CO, SV and dP/dtmax . In contrast, rats receiving crystalloid or dextran treatment showed a return to pre-hypothermic control levels of CO and SV after rewarming, with the dextran group displaying significantly better amelioration of post-hypothermic cardiac dysfunction than the crystalloid group. Compared to the post-hypothermic increase in myocardial [Ca2+ ]i in non-treated controls, [Ca2+ ]i values with crystalloid and dextran did not increase to the same extent after rewarming. Volume replacement with crystalloid or dextran during rewarming abolishes post-hypothermic cardiac dysfunction, and partially mitigates the hypothermia-induced elevation of [Ca2+ ]i .


Asunto(s)
Hipotermia Inducida , Hipotermia , Animales , Masculino , Miocitos Cardíacos , Ratas , Ratas Wistar , Recalentamiento/métodos
12.
Cryobiology ; 98: 33-38, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33412156

RESUMEN

Accidental hypothermia is associated with increased risk for arrhythmias. QRS/QTc is proposed as an ECG-marker, where decreasing values predict hypothermia-induced ventricular arrhythmias. If reliable it should also predict nonappearance of arrhythmias, observed in species like rat that regularly tolerate prolonged hypothermia. A rat model designed for studying cardiovascular function during cooling, hypothermia and subsequent rewarming was chosen due to species-dependent resistance to ventricular arrhythmias. ECG was recorded throughout the protocol. No ventricular arrhythmias occurred during experiments. QRS/QTc increased throughout the cooling period and remained above normothermic baseline until rewarmed. Different from the high incidence of hypothermia-induced ventricular arrhythmias in accidental hypothermia patients, where QRS/QTc ratio is decreased in moderate hypothermia; hypothermia and rewarming of rats is not associated with increased risk for ventricular fibrillation. This resistance to lethal hypothermia-induced arrhythmias was predicted by QRS/QTc.


Asunto(s)
Hipotermia Inducida , Hipotermia , Animales , Arritmias Cardíacas/etiología , Criopreservación/métodos , Humanos , Hipotermia/terapia , Ratas , Recalentamiento , Fibrilación Ventricular/etiología
13.
Front Med (Lausanne) ; 7: 566388, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282886

RESUMEN

Rewarming from hypothermia is often challenged by coexisting cardiac dysfunction, depressed organ blood flow (OBF), and increased systemic vascular resistance. Previous research shows cardiovascular inotropic support and vasodilation during rewarming to elevate cardiac output (CO). The present study aims to compare the effects of inodilatation by levosimendan (LS) and vasodilation by nitroprusside (SNP) on OBF and global oxygen transport during rewarming from hypothermia. We used an in vivo experimental rat model of 4 h 15°C hypothermia and rewarming. A stable isotope-labeled microsphere technique was used to determine OBF. Cardiac and arterial pressures were monitored with fluid-filled pressure catheters, and CO was measured by thermodilution. Two groups were treated with either LS (n = 7) or SNP (n = 7) during the last hour of hypothermia and throughout rewarming. Two groups served as hypothermic (n = 7) and normothermic (n = 6) controls. All hypothermia groups had significantly reduced CO, oxygen delivery, and OBF after rewarming compared to their baseline values. After rewarming, LS had elevated CO significantly more than SNP (66.57 ± 5.6/+30% vs. 54.48 ± 5.2/+14%) compared to the control group (47.22 ± 3.9), but their ability to cause elevation of brain blood flow (BBF) was the same (0.554 ± 0.180/+81 vs. 0.535 ± 0.208/+75%) compared to the control group (0.305 ± 0.101). We interpret the vasodilator properties of LS and SNP to be the primary source to increase organ blood flow, superior to the increase in CO.

14.
Front Physiol ; 11: 213, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32372965

RESUMEN

AIMS: Complete restitution of neurologic function after 6 h of pre-hospital resuscitation and in-hospital rewarming has been reported in accidental hypothermia patients with cardiac arrest (CA). However, the level of restitution of circulatory function during long-lasting hypothermic cardiopulmonary resuscitation (CPR) remains largely unknown. We compared the effects of CPR in replacing spontaneous circulation during 3 h at 27°C vs. 45 min at normothermia by determining hemodynamics, global oxygen transport (DO2), oxygen uptake (VO2), and organ blood flow. METHODS: Anesthetized pigs (n = 7) were immersion cooled to CA at 27°C. Predetermined variables were compared: (1) Before cooling, during cooling to 27°C with spontaneous circulation, after CA and subsequent continuous CPR (n = 7), vs. (2) before CA and during 45 min CPR in normothermic pigs (n = 4). RESULTS: When compared to corresponding values during spontaneous circulation at 38°C: (1) After 15 min of CPR at 27°C, cardiac output (CO) was reduced by 74%, mean arterial pressure (MAP) by 63%, DO2 by 47%, but organ blood flow was unaltered. Continuous CPR for 3 h maintained these variables largely unaltered except for significant reduction in blood flow to the heart and brain after 3 h, to the kidneys after 1 h, to the liver after 2 h, and to the stomach and small intestine after 3 h. (2) After normothermic CPR for 15 min, CO was reduced by 71%, MAP by 54%, and DO2 by 63%. After 45 min, hemodynamic function had deteriorated significantly, organ blood flow was undetectable, serum lactate increased by a factor of 12, and mixed venous O2 content was reduced to 18%. CONCLUSION: The level to which CPR can replace CO and MAP during spontaneous circulation at normothermia was not affected by reduction in core temperature in our setting. Compared to spontaneous circulation at normothermia, 3 h of continuous resuscitation at 27°C provided limited but sufficient O2 delivery to maintain aerobic metabolism. This fundamental new knowledge is important in that it encourages early and continuous CPR in accidental hypothermia victims during evacuation and transport.

15.
BMC Anesthesiol ; 19(1): 214, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31747898

RESUMEN

BACKGROUND: In different models of hypoxia, blockade of opioid or N-methyl-D-aspartate (NMDA) receptors shows cardio- and neuroprotective effects with a consequent increase in animal survival. The aim of the study was to investigate effects of pre-treatment with Morphine or Ketamine on hemodynamic, acid-base status, early survival, and biochemical markers of brain damage in a rat model of asphyxial cardiac arrest (ACA). METHODS: Under anaesthesia with Thiopental Sodium 60 mg/kg, i.p., Wistar rats (n = 42) were tracheostomized and catheters were inserted in a femoral vein and artery. After randomization, the rats were pre-treated with: Morphine 5 mg/kg i.v. (n = 14); Ketamine 40 mg/kg i.v. (n = 14); or equal volume of i.v. NaCl 0.9% as a Control (n = 14). ACA was induced by corking of the tracheal tube for 8 min, and defined as a mean arterial pressure (MAP) < 20 mmHg. Resuscitation was started at 5 min after cardiac arrest (CA). Invasive MAP was recorded during experiments. Arterial pH and blood gases were sampled at baseline (BL) and 10 min after CA. At the end of experiments, all surviving rats were euthanised, brain and blood samples for measurement of Neuron Specific Enolase (NSE), s100 calcium binding protein B (s100B) and Caspase-3 (CS-3) were retrieved. RESULTS: At BL no differences between groups were found in hemodynamic or acid-base status. After 3 min of asphyxia, all animals had cardiac arrest (CA). Return of spontaneous circulation (MAP > 60 mmHg) was achieved in all animals within 3 min after CA. At the end of the experiment, the Ketamine pre-treated group had increased survival (13 of 14; 93%) compared to the Control (7 of 14; 50%) and Morphine (10 of 14; 72%) groups (p = 0.035). Biochemical analysis of plasma concentration of NSE and s100B as well as an analysis of CS-3 levels in the brain tissue did not reveal any differences between the study groups. CONCLUSION: In rats after ACA, pre-treatment with Morphine or Ketamine did not have any significant influence on hemodynamic and biochemical markers of brain damage. However, significantly better pH level and increased early survival were found in the Ketamine pre-treated group.


Asunto(s)
Lesiones Encefálicas/etiología , Paro Cardíaco/terapia , Ketamina/farmacología , Morfina/farmacología , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Animales , Asfixia/complicaciones , Análisis de los Gases de la Sangre , Lesiones Encefálicas/fisiopatología , Reanimación Cardiopulmonar , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Antagonistas de Aminoácidos Excitadores/farmacología , Paro Cardíaco/complicaciones , Paro Cardíaco/fisiopatología , Hemodinámica/efectos de los fármacos , Concentración de Iones de Hidrógeno , Ketamina/administración & dosificación , Masculino , Morfina/administración & dosificación , Ratas , Ratas Wistar , Sobrevida
16.
Exp Physiol ; 104(9): 1353-1362, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31219201

RESUMEN

NEW FINDINGS: What is the central question of this study? Mortality in accidental hypothermia patients rewarmed by extracorporeal circulation remains high. Knowledge concerning optimal fluid additions for extracorporeal rewarming is lacking, with no apparent consensus. Does colloid versus crystalloid priming have different effects on fluid balance and blood flow distribution during extracorporeal rewarming? What is the main finding and its importance? In our rat model of extracorporeal rewarming from hypothermic cardiac arrest, hydroxyethyl starch generates less tissue oedema and increases circulating blood volume and organ blood flow, compared with saline. The composition of fluid additions appears to be important during extracorporeal rewarming from hypothermia. ABSTRACT: Rewarming by extracorporeal circulation (ECC) is the recommended treatment for accidental hypothermia patients with cardiac instability. Hypothermia, along with initiation of ECC, introduces major changes in fluid homeostasis and blood flow. Scientific data to recommend best practice use of ECC for rewarming these patients is lacking, and no current guidelines exist concerning the choice of priming fluid for the extracorporeal circuit. The primary aim of this study was to compare the effects of different fluid protocols on fluid balance and blood flow distribution during rewarming from deep hypothermic cardiac arrest. Sixteen anaesthetized rats were cooled to deep hypothermic cardiac arrest and rewarmed by ECC. During cooling, rats were equally randomized into two groups: an extracorporeal circuit primed with saline or primed with hydroxyethyl starch (HES). Calculations of plasma volume (PV), circulating blood volume (CBV), organ blood flow, total tissue water content, global O2 delivery and consumption were made. During and after rewarming, the pump flow rate, mean arterial pressure, PV and CBV were significantly higher in HES-treated compared with saline-treated rats. After rewarming, the HES group had significantly increased global O2 delivery and blood flow to the brain and kidneys compared with the saline group. Rats in the saline group demonstrated a significantly higher total tissue water content in the kidneys, skeletal muscle and lung. Compared with crystalloid priming, the use of an iso-oncotic colloid prime generates less tissue oedema and increases PV, CBV and organ blood flow during ECC rewarming. The composition of fluid additions appears to be an important factor during ECC rewarming from hypothermia.


Asunto(s)
Hipotermia/fisiopatología , Flujo Sanguíneo Regional/efectos de los fármacos , Almidón/farmacología , Equilibrio Hidroelectrolítico/efectos de los fármacos , Animales , Temperatura Corporal/efectos de los fármacos , Paro Cardíaco/tratamiento farmacológico , Hemodinámica/efectos de los fármacos , Masculino , Volumen Plasmático/efectos de los fármacos , Ratas , Ratas Wistar , Recalentamiento/métodos
17.
Front Physiol ; 10: 1597, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998144

RESUMEN

Cardiovascular risk is elevated in divers, but detailed information of cardiac function during diving is missing. The aim of this study was to apply an intact rat model with continuous monitoring of cardiac left ventricular (LV) function in a simulated diving experiment. Thirteen rats were inserted with a LV pressure-volume catheter and a pressure transducer in the femoral artery to measure hemodynamic variables, and randomly assigned to diving (n = 9) and control (n = 4) groups. The diving group was compressed to 600 kPa in air, maintained at pressure for 45 min (bottom phase), and decompressed to surface at 50 kPa/min. Data was collected before, during, and up to 60 min after exposure in the diving group, and at similar times in non-diving controls. During the bottom phase, stroke volume (SV) (-29%) and cardiac output (-30%) decreased, whereas LV end-systolic volume (+13%), mean arterial pressure (MAP) (+29%), and total peripheral resistance (TPR) (+72%) increased. There were no changes in LV contractility, stroke work, or diastolic function. All hemodynamic variables returned to baseline values within 60 min after diving. In conclusion, our simulated dive experiment to 600 kPa increased MAP and TPR to levels which caused a substantial reduction in SV and LV volume output. The increase in cardiac afterload demonstrated to take place during a dive is well tolerated by the healthy heart in our model, whereas in a failing heart this abrupt change in afterload may lead to acute cardiac decompensation.

18.
Exp Physiol ; 104(1): 50-60, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30375081

RESUMEN

NEW FINDINGS: What is the central question of this study? Absence of hypothermia-induced cardiac arrest is a strong predictor for a favourable outcome after rewarming. Nevertheless, detailed knowledge of preferences in organ blood flow during rewarming with spontaneous circulation is largely unknown. What is the main finding and its importance? In a porcine model of accidental hypothermia, we find, despite a significantly reduced cardiac output during rewarming, normal blood flow and O2 supply in vital organs owing to patency of adequate physiological compensatory responses. In critical care medicine, active rewarming must aim at supporting the spontaneous circulation and maintaining spontaneous autonomous vascular control. ABSTRACT: The absence of hypothermia-induced cardiac arrest is one of the strongest predictors for a favourable outcome after rewarming from accidental hypothermia. We studied temperature-dependent changes in organ blood flow and O2 delivery ( D O 2 ) in a porcine model with spontaneous circulation during 3 h of hypothermia at 27°C followed by rewarming. Anaesthetized pigs (n = 16, weighing 20-29 kg) were randomly assigned to one of two groups: (i) hypothermia/rewarming (n = 10), immersion cooled to 27°C and maintained for 3 h before being rewarmed by pleural lavage; and (ii) time-matched normothermic (38°C) control animals (n = 6), immersed for 6.5 h, the last 2 h with pleural lavage. Regional blood flow was measured using a neutron-labelled microsphere technique. Simultaneous measurements of D O 2 and O2 consumption ( V ̇ O 2 ) were made. During hypothermia, there was a reduction in organ blood flow, V ̇ O 2 and D O 2 . After rewarming, there was a 40% reduction in stroke volume and cardiac output, causing a global reduction in D O 2 ; nevertheless, blood flow to the brain, heart, stomach and small intestine returned to prehypothermic values. Blood flow in the liver and kidneys was significantly reduced. Cerebral D O 2 and V ̇ O 2 returned to control values. After hypothermia and rewarming there is a significant lowering of D O 2 owing to heart failure. However, compensatory mechanisms preserve O2 transport, blood flow and V ̇ O 2 in most organs. Nevertheless, these results indicate that hypothermia-induced heart failure requires therapeutic intervention.


Asunto(s)
Hemodinámica/fisiología , Hipotermia/metabolismo , Oxígeno/metabolismo , Recalentamiento , Animales , Temperatura Corporal/fisiología , Hipotermia Inducida/métodos , Modelos Animales , Porcinos
19.
J Appl Physiol (1985) ; 124(4): 850-859, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357499

RESUMEN

Rewarming from accidental hypothermia is associated with cardiovascular dysfunction that complicates rewarming and contributes to a high mortality rate. We investigated autonomic cardiovascular control, as well as the separate effects of cooling, hypothermia, and rewarming on hemodynamic function, aiming to provide knowledge of the pathophysiology causing such complications in these patients. A rat model designed for circulatory studies during cooling, hypothermia (15°C), and rewarming was used. Spectral analysis of diastolic arterial pressure and heart rate allowed assessment of the autonomic nervous system. Hemodynamic variables were monitored using a conductance catheter in the left ventricle and a pressure transducer connected to the left femoral artery. Sympathetic cardiovascular control was reduced after rewarming. Stroke volume increased during cooling but decreased during stable hypothermia and did not normalize during rewarming. Despite autonomic dysfunction, total peripheral resistance increased during cooling and did not normalize after rewarming. The present data show that sympathetic cardiovascular control is reduced by hypothermia and rewarming. A simultaneous systolic dysfunction is seen in rewarmed animals, caused by reduced filling of the left ventricle and impaired contractile function, in the presence of normal diastolic function. These findings show that dysfunction of the efferent sympathetic nervous system could be instrumental in development of rewarming shock. NEW & NOTEWORTHY The present study shows impaired autonomic control of cardiovascular function after rewarming from severe hypothermia. In victims of accidental hypothermia, rewarming shock is a much feared and lethal complication. The pathophysiology causing such cardiovascular collapse appears complex. Our findings indicate that dysfunction of the autonomic nervous system is an important part of the pathophysiology. Thus the present study gives novel information, important for further development of treatment strategies in this patient group.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Sistema Cardiovascular/fisiopatología , Hipotermia/fisiopatología , Recalentamiento/efectos adversos , Animales , Hemodinámica , Hipotermia/terapia , Masculino , Ratas Wistar
20.
Cryobiology ; 70(1): 9-16, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25445571

RESUMEN

BACKGROUND: Animal studies show reduced inotropic effects of cardiac ß-adrenoceptor agonists like epinephrine (Epi) during hypothermia and rewarming, while drugs targeting other pharmacological mechanisms have positive effects. This study therefore aimed to determine ß-adrenoceptor sensitivity in isolated cardiomyocytes and investigate hemodynamic effects of Epi and its ability to stimulate cardiac ß-adrenoceptors at different temperatures in vivo. METHODS: Isolated rat myocardial cells were incubated with the radioactive ß-adrenoceptor ligand [(3)H]-CGP12177 and propranolol, used as a displacer. Cells were subjected to normothermia (37 °C) or hypothermia (15 °C). After incubation, radioactivity was measured to estimate ß-adrenoceptor affinity for propranolol (IC50), as a measure of ß-adrenoceptor sensitivity. In separate in vivo experiments, Epi (1.25 µg/min) was administered the last 5min of experiments in normothermic (37 °C, 5h), hypothermic (4h at 15 °C) and rewarmed rats (4h at 15 °C, and subsequently rewarmed to 37 °C). Hemodynamic parameters were monitored during infusion. Hearts were thereafter freeze-clamped and tissue cAMP was measured. RESULTS: In vitro measurements of IC50 for propranolol showed a hypothermia-induced increase in ß-adrenoceptor sensitivity at 15 °C. Corresponding in vivo experiments at 15 °C showed decreased cardiac output and stroke volume, whereas total peripheral resistance (TPR) increased during Epi infusion, simultaneous with a 4-fold cAMP increase. CONCLUSIONS: This experiment shows a hypothermia-induced in vivo and in vitro increase of cardiac ß-adrenoceptor sensitivity, and simultaneous lack of inotropic effects of Epi in the presence of increased TPR. Our findings therefore indicate that hypothermia-induced reduction in inotropic effects of Epi is due to substantial elevation of TPR, rather than ß-adrenoceptor dysfunction.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Cardiotónicos/farmacología , Epinefrina/farmacología , Corazón/efectos de los fármacos , Hipotermia/fisiopatología , Receptores Adrenérgicos/metabolismo , Resistencia Vascular/efectos de los fármacos , Animales , Células Cultivadas , Hemodinámica/efectos de los fármacos , Hipotermia Inducida , Masculino , Propranolol/farmacología , Ratas , Ratas Wistar , Recalentamiento , Volumen Sistólico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...