Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Innovation (Camb) ; 5(4): 100624, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746910

RESUMEN

The broader application of lithium-ion batteries (LIBs) is constrained by safety concerns arising from thermal runaway (TR). Accurate prediction of TR is essential to comprehend its underlying mechanisms, expedite battery design, and enhance safety protocols, thereby significantly promoting the safer use of LIBs. The complex, nonlinear nature of LIB systems presents substantial challenges in TR modeling, stemming from the need to address multiscale simulations, multiphysics coupling, and computing efficiency issues. This paper provides an extensive review and outlook on TR modeling technologies, focusing on recent advances, current challenges, and potential future directions. We begin with an overview of the evolutionary processes and underlying mechanisms of TR from multiscale perspectives, laying the foundation for TR modeling. Following a comprehensive understanding of TR phenomena and mechanisms, we introduce a multiphysics coupling model framework to encapsulate these aspects. Within this framework, we detail four fundamental physics modeling approaches: thermal, electrical, mechanical, and fluid dynamic models, highlighting the primary challenges in developing and integrating these models. To address the intrinsic trade-off between computational accuracy and efficiency, we discuss several promising modeling strategies to accelerate TR simulations and explore the role of AI in advancing next-generation TR models. Last, we discuss challenges related to data availability, model scalability, and safety standards and regulations.

2.
Nano Lett ; 23(22): 10317-10325, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37937967

RESUMEN

Thin film-based thermal flow sensors afford applications in healthcare and industries owing to their merits in preserving initial flow distributions. However, traditional thermal flow sensors are primarily applied to track flow intensities based on hot-wire or hot-film sensing mechanisms due to their relatively facile device configurations and fabrication strategies. Herein, a calorimetric thermal flow sensor is proposed based on laser direct writing to form laser-induced graphene as heaters and temperature sensors, resulting in monitoring both flow intensities and orientations. Via homogeneously surrounding spiral heaters with multiple temperature sensors, the device exhibits high sensitivity (∼162 K·s/m) at small flows with an extended flow detection range (∼25 m/s). Integrating the device with a data-acquisition board and a dual-mode graphical user interface enables wirelessly and dynamically monitoring respiration and the motion of robotic arms. This versatile flow sensor with facile manufacturing affords potentials in health inspection, remote monitoring, and studying hydrodynamics.

3.
Sensors (Basel) ; 23(19)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37836891

RESUMEN

Human detection is the task of locating all instances of human beings present in an image, which has a wide range of applications across various fields, including search and rescue, surveillance, and autonomous driving. The rapid advancement of computer vision and deep learning technologies has brought significant improvements in human detection. However, for more advanced applications like healthcare, human-computer interaction, and scene understanding, it is crucial to obtain information beyond just the localization of humans. These applications require a deeper understanding of human behavior and state to enable effective and safe interactions with humans and the environment. This study presents a comprehensive benchmark, the Common Human Postures (CHP) dataset, aimed at promoting a more informative and more encouraging task beyond mere human detection. The benchmark dataset comprises a diverse collection of images, featuring individuals in different environments, clothing, and occlusions, performing a wide range of postures and activities. The benchmark aims to enhance research in this challenging task by designing novel and precise methods specifically for it. The CHP dataset consists of 5250 human images collected from different scenes, annotated with bounding boxes for seven common human poses. Using this well-annotated dataset, we have developed two baseline detectors, namely CHP-YOLOF and CHP-YOLOX, building upon two identity-preserved human posture detectors: IPH-YOLOF and IPH-YOLOX. We evaluate the performance of these baseline detectors through extensive experiments. The results demonstrate that these baseline detectors effectively detect human postures on the CHP dataset. By releasing the CHP dataset, we aim to facilitate further research on human pose estimation and to attract more researchers to focus on this challenging task.


Asunto(s)
Benchmarking , Postura , Humanos , Investigadores , Tecnología
4.
Opt Express ; 31(16): 26178-26193, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710485

RESUMEN

A high-birefringence and low-loss terahertz (THz) hollow-core anti-resonant fiber (THz HC-ARF) is designed and analyzed numerically by the finite element method (FEM). The THz HC-ARF is composed of an elliptical tube as the core for high birefringence guidance and a pair of symmetrical slabs arranged vertically as the cladding to attain low loss. Numerical analysis indicates that the birefringence reaches 10-2 in the transmission window between 0.21 and 0.35 THz. The highest birefringence is 4.61 × 10-2 at 0.21 THz with a loss of 0.15 cm-1. To verify the theoretical results, the THz HC-ARF is produced by three-dimensional (3D) printing, and the transmission characteristics are determined by THz time-domain spectroscopy (THz-TDS). High birefringence in the range of 2.17 × 10-2 to 3.72 × 10-2 and low loss in the range of 0.12 to 0.18 cm-1 are demonstrated experimentally in the 0.2 to 0.27 THz transmission window. The highest birefringence is 3.72 × 10-2 at 0.22 THz and the corresponding loss is 0.18 cm-1. The THz HC-ARF shows the highest birefringence besides relatively low loss compared to similar THz HC-ARFs reported recently.

5.
Adv Sci (Weinh) ; 10(32): e2303949, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37740421

RESUMEN

Skin-like flexible sensors play vital roles in healthcare and human-machine interactions. However, general goals focus on pursuing intrinsic static and dynamic performance of skin-like sensors themselves accompanied with diverse trial-and-error attempts. Such a forward strategy almost isolates the design of sensors from resulting applications. Here, a machine learning (ML)-guided design of flexible tactile sensor system is reported, enabling a high classification accuracy (≈99.58%) of tactile perception in six dynamic touch modalities. Different from the intuition-driven sensor design, such ML-guided performance optimization is realized by introducing a support vector machine-based ML algorithm along with specific statistical criteria for fabrication parameters selection to excavate features deeply concealed in raw sensing data. This inverse design merges the statistical learning criteria into the design phase of sensing hardware, bridging the gap between the device structures and algorithms. Using the optimized tactile sensor, the high-quality recognizable signals in handwriting applications are obtained. Besides, with the additional data processing, a robot hand assembled with the sensor is able to complete real-time touch-decoding of an 11-digit braille phone number with high accuracy.


Asunto(s)
Percepción del Tacto , Tacto , Humanos , Piel , Aprendizaje Automático
6.
Anal Chim Acta ; 1252: 341051, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-36935139

RESUMEN

A reflective fiber-optic Fabry-Perot cavity probe sensor is proposed to selectively measure cholesterol concentration by insert single mode fiber into ceramic tube and immobilize epoxy resin (ER)/graphene oxide (GO)/beta-cyclodextrin (ß-CD) multi-layer film onto end face of ceramic tube. EDC/NHS activated GO is selected to form chemical binding with ß-CD, and ß-CD is the sensitive materials to bind with cholesterol molecules. With multi-layer film assisted, the sensitivity of sensor to cholesterol concentration can reach 3.92 nm/mM and the limit of detection reaches 3.48 µ M. In addition, 4 mM hemoglobin, glucose and ascorbic acid are doped into a set cholesterol sample and verified the highly selectivity of sensing cholesterol. Furthermore, the reproducibility was proved by measure the spectrum of four sensors with same fabrication process, and the reusability was also proved by repeated measurements. Overall, the sensor features with high mechanical strength, ease of fabrication, real-time monitoring, low cost and ease for measurement that given by probe structure. Therefore, the sensor provides a remarkable analytical platform for biosensing applications.

7.
Appl Opt ; 61(25): 7336-7342, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256031

RESUMEN

Scalar and vector vortex beams are characterized of a helical wavefront but different polarized states, which result in different applications. In this paper, we design and fabricate a plasmonic metasurface based on the geometric phase principle. The designed metasurfaces are capable of generating a scalar vortex beam with a topological charge of ±2 and a vectorial vortex beam with a topological charge of ±1 in the near-infrared band. The experimental results are in good agreement with the simulation results, and our work provides a new idea for the development of a multivortex beam converter.

8.
Analyst ; 147(13): 3025-3034, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35642652

RESUMEN

An accurate as well as highly sensitive label-free chemical sensing platform for the detection of various metal ions was demonstrated. The chemical sensor was derived from the micro-tapered long-period fiber grating (MLPG) by depositing graphene oxide (GO) by chemical-bonding and optical-tweezer effects. The enhancement in refractive index (RI) sensitivity as well as reusability was obtained by evaluating the deposition thickness in the range of approximately 97.7 to 158.9 nm. Based on the analysis of adsorption principles, the enhanced RI sensitivity leads to a limit of detection as low as 3.2 ppb. The highest sensitivities for the cases studied using sodium and manganese ions in a wide concentration range of 1 ppb to 1 × 106 ppb are respectively 2.2 × 10-3 dB per ppb and 3.2 × 10-3 dB per ppb. Mixture samples were also studied to evaluate the properties of sensing the doped ions. This demonstration of GO modified MLPG is bound to find potential applications that require sensing of mixed samples and illustrates significant importance in developing cost-effective, label-free, reusable, and real-time chemical sensors.


Asunto(s)
Grafito , Grafito/química , Iones , Metales , Refractometría
9.
IEEE Trans Med Robot Bionics ; 4(1): 106-117, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35582700

RESUMEN

Driven by the demand to largely mitigate nosocomial infection problems in combating the coronavirus disease 2019 (COVID-19) pandemic, the trend of developing technologies for teleoperation of medical assistive robots is emerging. However, traditional teleoperation of robots requires professional training and sophisticated manipulation, imposing a burden on healthcare workers, taking a long time to deploy, and conflicting the urgent demand for a timely and effective response to the pandemic. This paper presents a novel motion synchronization method enabled by the hybrid mapping technique of hand gesture and upper-limb motion (GuLiM). It tackles a limitation that the existing motion mapping scheme has to be customized according to the kinematic configuration of operators. The operator awakes the robot from any initial pose state without extra calibration procedure, thereby reducing operational complexity and relieving unnecessary pre-training, making it user-friendly for healthcare workers to master teleoperation skills. Experimenting with robotic grasping tasks verifies the outperformance of the proposed GuLiM method compared with the traditional direct mapping method. Moreover, a field investigation of GuLiM illustrates its potential for the teleoperation of medical assistive robots in the isolation ward as the Second Body of healthcare workers for telehealthcare, avoiding exposure of healthcare workers to the COVID-19.

10.
Appl Opt ; 60(22): 6659-6664, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612910

RESUMEN

In this paper, we present a microstructured optofluidic in-fiber Raman sensor for the detection of quinolone antibiotic residue in a water environment based on Ag surface-enhanced Raman scattering (SERS) substrate grown on the surface of the suspended core of micro-hollow optical fiber (MHF). Here, MHF has a special structure with a suspended core and a microchannel inside, which can become a natural in-fiber optofluidic device. Meanwhile, the self-assembled Ag SERS substrate can be grown on the suspended core's surface through chemical bonds, forming a microstructured optofluidic device with a Raman enhancement effect. Therefore, it can effectively detect the Raman signal of unlabeled trace quinolone antibiotic residue (ciprofloxacin and norfloxacin) inside the optical fiber. The results show that the ciprofloxacin and norfloxacin detection limits (LOD) are 10-10M and 10-11M, respectively. Compared with the maximum residue limit (3.01×10-7mol/L) stipulated by the European Union, the results are much lower, and an ideal quantitative relationship can be obtained within the detection range. Significantly, this study provides an in-fiber microstructured optofluidic Raman sensor for the label-free detection of quinolone antibiotic residue, which will have good development prospects in the field of antibiotic water pollution environmental detection.


Asunto(s)
Residuos de Medicamentos/análisis , Nanopartículas del Metal , Fibras Ópticas , Quinolonas/análisis , Espectrometría Raman/instrumentación , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Ciprofloxacina/análisis , Europa (Continente) , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Rastreo , Norfloxacino/análisis , Valores de Referencia , Plata
11.
Appl Opt ; 59(33): 10506-10511, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33361985

RESUMEN

All-fiber modulators and switches have drawn great interest in the photonics domain, and they are applied in viable photonic and optoelectronic devices. In this work, with the assistance of an agarose membrane, aspherical gold nanoparticles are embedded on the surface of the microfiber treated with the piranha solution. An all-fiber Mach-Zehnder interferometer was used to realize a low-cost, low-loss, and conveniently prepared all-fiber phase modulator. By taking advantage of the local surface plasmon resonance effect of gold nanoparticles embedded in the agarose membrane, under the excitation of near-infrared region light, the gold nanoparticles were excited to change the effective refractive index of one arm of the Mach-Zehnder interferometer. A maximum phase shift of ∼6π at 1550 nm was obtained from the device. In addition, an all-optical switch was achieved with a rising edge time of 47 ms and falling edge time of 14 ms. The proposed all-fiber modulator and switch based on the local surface plasmon resonance effect of gold nanoparticles embedded in agarose membrane will provide great potential in all-optical fiber systems.

12.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): 1731-1739, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175749

RESUMEN

This paper presents an approach to design the all-dielectric metasurface with multi-function in the near-infrared range of 1.5-1.6 µm. Based on the geometric phase principle, the all-dielectric metasurface is composed of the Si nanopillar and the SiO2 substrate as an emitter unit distributed in a 21×21 array. Under the incidence of the circularly polarized light at 1550 nm, the metasurface works as a vortex-beam generator with high performance which generates the vortex beam with topological charges of ±1, and the mode purity of the vortex beam is 90.66%. Under the incidence of the linearly polarized light at 1550 nm, the metasurface also works as the azimuthally/radially polarized beam generator with high performance, and the purities of the azimuthally and the radially polarized beams are 92.52% and 91.02%, respectively. Moreover, the metasurface generates different output spots under the different incident lights which can be applied to optical encryption, and the metasurface with the phase gradient also can be used as the dual-channel encoder/decoder in optical communication. The simulated results are in good agreement with the theoretical derivation. The designed metasurface may become a potential candidate as a multi-function photon device in the integrated optical system in the future.

13.
Opt Lett ; 44(21): 5173-5176, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31674959

RESUMEN

In this Letter, we propose, to the best of our knowledge, the first in-fiber optofluidic Raman surface-enhanced Raman spectroscopy (SERS) sensor based on a microstructured hollow fiber (MHF) with a suspended core. Taking advantage of the unique internal structure, we immobilize silver nanoparticles with an SERS effect in the MHF by chemical bonding. The Raman signal of the microfluidic sample is excited by the excitation light in the suspended core through an evanescent field. Then the online SERS signal can be coupled back into the core and detected. To demonstrate the feasibility of the device, rhodamine 6G is chosen as the analyte, and high-quality SERS spectra are detected with the limit of detection of 1×10-14 M. Furthermore, an online optofluidic test is conducted on ceftriaxone (C18H18N8O7S3) to examine its capabilities in antibiotic sensing. The results show that the LOD of the samples is 10-6 M. Significantly, this Letter provides an integrated optofluidic in-fiber SERS sensor with a microchannel that can be integrated with chip devices without spatial optical coupling, which has a broad application in medicine and food safety, as well as various aspects of biological in-fiber sensing.

14.
Appl Opt ; 58(21): 5774-5779, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31503880

RESUMEN

In this design, we introduced a surface plasmon resonance (SPR) fiber-sensing probe into a column chromatography (CC) system to realize on-line dynamic detection in sample separation. The refractive index of the gel around the probe would be adjusted dynamically by the concentration change of the sample during CC separation. To demonstrate the separation and on-line detection process, bovine serum albumin (BSA) and riboflavin-5-phosphate sodium (FMN-Na) are chosen as the analytes in a Sephadex gel filtration chromatography system. The results show that the apparent reversible shift of the SPR spectrum can characterize the separation process. Specifically, the separated BSA with an outflow time of 8 min can cause a resonance wavelength shift of 15.5 nm, and the FMN-Na with an outflow time of 26 min can cause a shift of 8.4 nm. This on-line dynamic detection of SPR spectra has great potential to save time and simplify the analysis process compared to the complex thin layer chromatography detection steps in traditional manual CC.

15.
Opt Lett ; 44(5): 1092-1095, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30821778

RESUMEN

All-fiber integrated phase shifters and optical switches have important applications in photonic devices, such as optical controlling, optical fiber sensing, and signal processing. In this Letter, for the first time to the best of our knowledge, we integrated the photothermal effect of a nanomaterial based on gold nanorods (GNRs) and a microfiber interferometer to realize a compact all-optical fiber phase shifter. GNRs surrounding the microfiber were excited by near-infrared light via the evanescent interaction, subsequently releasing the heat through the photothermal effect. Then, the refractive index around the microfiber was varied to shift the interference dips in a reversible manner. Experimentally, a spectral shift efficiency of 0.16 nm/mW near the wavelength of 1550 nm was obtained using an excitation laser at the wavelength of 808 nm. The device also provided an all-optical switching with the modulation depth of 76.4%. The proposed GNR-based all-fiber device can provide high potentials in all-optical signal control applications.

16.
Opt Lett ; 44(24): 5961-5964, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32628203

RESUMEN

In this Letter, we present a novel, to the best of our knowledge, component with beam delivering and wide field beam homogenizing functions by grafting an artificial compound eye (ACE) micro-structure onto the polymer optical fiber (POF) end face. The 3D ACE mold is fabricated by femtosecond laser-assisted micro machining, and the ACE micro-structure is transferred onto the end face through high accuracy nano-imprinting. The resultant POF end face integrates over 400 spherical micro-lenses, enabling a 40% enhancement in both the acceptance angle and the effective numerical aperture. Meanwhile, the integrated ommatidia array serves as an outstanding beam homogenizer, shaping the output beam into quasi flat-top distribution, which demonstrates promise in wide field homogeneous illumination, by reflection and transmission imaging experiments in both visible and near infrared bands.

17.
Opt Express ; 25(15): 18205-18215, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28789310

RESUMEN

We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL-1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

18.
Anal Chim Acta ; 953: 63-70, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28010744

RESUMEN

In this paper, a simple and effective method was designed to synthesize hydrophobic carbon dots. Subsequently, amphiphilic fluorescent carbon dots (A-CDs) were synthesized by further surface modification. The result A-CDs show excellent optical properties with a quantum yield of 16.9%. It was interestingly found that morin (MR) and its fluorescent metal-ion complex (MR-Al3+) can successfully coordinate on the surface of A-CDs, the emission of A-CDs completely overlapped the absorption peak of MR-Al3+. Thus, the prepared A-CDs can be used as an effective fluorescent probe for Al3+ based on a fluorescence resonance energy transfer process. The sensing platform can realize real-time detection of Al3+ within 0.5 min. The fluorescence signals of the system were linearly correlated with the concentration of Al3+ over a range of 8-20 µM, with a detection limit of 0.113 µM. The method was also successfully applied to image the distribution of Al3+ in Human Umbilical Vein Endothelial Cells.


Asunto(s)
Aluminio/análisis , Carbono , Células Endoteliales de la Vena Umbilical Humana , Puntos Cuánticos , Colorantes Fluorescentes , Humanos , Límite de Detección , Espectrometría de Fluorescencia
19.
Mater Sci Eng C Mater Biol Appl ; 68: 732-738, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27524074

RESUMEN

Fluorescent carbon nanodots (CNDs) were synthesized through a facile, economic and green one-step hydrothermal process. The CNDs exhibit various merits including excellent solubility, superior photostability and low toxicity. Besides, the CNDs can be used as an effective fluorescent probe for dopamine and Al(3+). What's more, this CNDs based fluorescent probe was favorably applied to the analyses of dopamine in biological fluids and Al(3+) in food samples. This CDs based sensing platform shows its potential applications in the field of biology and food analysis with extraordinary advantages such as fast and simple as well as environmental-friendly. Inspired by these results, the prepared CNDs can be utilized as logic gates at the molecular level.


Asunto(s)
Aluminio/metabolismo , Técnicas Biosensibles/métodos , Carbono/química , Dopamina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Nanoestructuras/química , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 163: 154-61, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27049867

RESUMEN

A novel organotin DFDPT was synthesized and characterized by elemental analysis, IR, (1)H, (13)C, (119)Sn, NMR techniques,etc. In order to investigate profoundly the relationship between DFDPT with human CYP3A4 proteaset and anticancer molecular mechanism of DFDPT, the intercalative mode of binding of DFDPT with CYP3A4 under physiological conditions were comprehensively evaluated using steady state, synchronous, three-dimensional fluorescence spectroscopy,circular dichroism and molecular docking. Fluorescence emission data showed that CYP3A4 fluorescence affected by DFDPT was a static quenching procedure, which implied that DFDPT-CYP3A4 complex had been formed. Apparent binding constants Kb of CYP3A4 with compound at 298 and 310K were 2.51×10(7) and 3.09×10(5), respectively. The binding sites number n was 1.64 and 1.22, respectively. The thermodynamic parameters ΔH and ΔS of the DFDPT-CYP3A4 complex were negative, which indicated that their interaction was driven mainly by hydrogen bonding and van der Waals force. The binding of DFDPT-CYP3A4 was spontaneous process in which ΔG was negative. The synchronous results showed DFDPT induced conformational changes of CYP3A4 protein. Three-dimensional fluorescence and circular dichroism spectra results also revealed conformation of CYP3A4 protein had been possible changed in the presence of DFDPT. Molecular docking was used to study the interaction orientation between DFDPT and CYP3A4 protease. The results indicated that DFDPT interacted with a panel of amino acids in the active sites of CYP3A4 protein mainly through formation of hydrogen bond. Furthermore, the predicted binding mode of DFDPT into CYP3A4 appeared to adopt an orientation with interactions among Arg105, Ser119 and Thr309.


Asunto(s)
Antineoplásicos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Simulación del Acoplamiento Molecular , Compuestos Orgánicos de Estaño/metabolismo , Espectrometría de Fluorescencia/métodos , Antineoplásicos/química , Sitios de Unión , Dicroismo Circular , Citocromo P-450 CYP3A/química , Humanos , Cinética , Compuestos Orgánicos de Estaño/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...