Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 16(7): 1717-1749, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750308

RESUMEN

Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.


Asunto(s)
Inmunohistoquímica , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Humanos , Ratones , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Inmunohistoquímica/métodos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Caspasa 8/metabolismo , Transducción de Señal , Ratones Endogámicos C57BL
2.
Front Immunol ; 15: 1342455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464537

RESUMEN

Epstein-Barr virus (EBV) contributes to the development of a significant subset of human lymphomas. As a herpes virus, EBV can transition between a lytic state which is required to establish infection and a latent state where a limited number of viral antigens are expressed which allows infected cells to escape immune surveillance. Three broad latency programs have been described which are defined by the expression of viral proteins RNA, with latency I being the most restrictive expressing only EBV nuclear antigen 1 (EBNA1) and EBV-encoded small RNAs (EBERs) and latency III expressing the full panel of latent viral genes including the latent membrane proteins 1 and 2 (LMP1/2), and EBNA 2, 3, and leader protein (LP) which induce a robust T-cell response. The therapeutic use of EBV-specific T-cells has advanced the treatment of EBV-associated lymphoma, however this approach is only effective against EBV-associated lymphomas that express the latency II or III program. Latency I tumors such as Burkitt lymphoma (BL) and a subset of diffuse large B-cell lymphomas (DLBCL) evade the host immune response to EBV and are resistant to EBV-specific T-cell therapies. Thus, strategies for inducing a switch from the latency I to the latency II or III program in EBV+ tumors are being investigated as mechanisms to sensitize tumors to T-cell mediated killing. Here, we review what is known about the establishment and regulation of latency in EBV infected B-cells, the role of EBV-specific T-cells in lymphoma, and strategies to convert latency I tumors to latency II/III.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Infección Latente , Linfoma de Células B Grandes Difuso , Humanos , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/complicaciones , Latencia del Virus , Linfoma de Burkitt/patología , Proteínas Virales/genética , Linfoma de Células B Grandes Difuso/patología
3.
Nat Immunol ; 25(2): 240-255, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182668

RESUMEN

Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.


Asunto(s)
Células Asesinas Naturales , Factor de Transcripción AP-1 , Factor de Transcripción AP-1/genética , Células Asesinas Naturales/metabolismo , Receptores de Interleucina-15 , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...