Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(8): 450, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970684

RESUMEN

Gold nanoclusters (AuNCs) possess weak intrinsic fluorescence, limiting their sensitivity in biosensing applications. This study addresses these limitations by developing a spatially confined dual-emission nanoprobe composed of silicon nanoparticles (SiNPs) and AuNCs. This amplified and stabilized fluorescence mechanism overcomes the limitations associated with using AuNCs alone, achieving superior sensitivity in the sensing platform. The nanoprobe was successfully employed for ratiometric detection of bleomycin (BLM) in serum samples, operating at an excitation wavelength of 365 nm, with emission wavelengths at 480 nm and 580 nm. The analytical performance of the system is distinguished by a linear detection range of 0-3.5 µM, an impressive limit of detection (LOD) of 35.27 nM, and exceptional recoveries ranging from 96.80 to 105.9%. This innovative approach significantly enhances the applicability and reliability of AuNC-based biosensing in complex biological media, highlighting its superior analytical capabilities.


Asunto(s)
Técnicas Biosensibles , Oro , Límite de Detección , Nanopartículas del Metal , Silicio , Oro/química , Silicio/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Nanopartículas/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Humanos
2.
Food Chem ; 455: 139850, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850984

RESUMEN

Direct, rapid and highly sensitive detection of heavy metals in rice is essential to ensure food safety. In this research, a combination of laser ablation and microwave plasma torch optical emission spectrometry (LA-MPT-OES) was proposed. Based on the optimal observation positions, a high sensitivity and direct determination of Cd, Hg, Pb and Cr in rice were realized. The limits of detection (LOD) were 0.97, 0.12, 0.61 and 0.15 µg/kg, respectively, which were reduced by one order of magnitude compared to the optimal observation height. In addition, the LOD was reduced by one to two orders of magnitude compared with the techniques that require sample pre-treatment. Moreover, the results of the Certified Reference Materials and real samples were in agreement with the reference values with a relative error in the range of 0.28% âˆ¼ 14.16%. The results demonstrated that LA-MPT-OES could be a promising tool to detect heavy metals in rice.


Asunto(s)
Cadmio , Contaminación de Alimentos , Plomo , Mercurio , Metales Pesados , Oryza , Oryza/química , Contaminación de Alimentos/análisis , Metales Pesados/análisis , Plomo/análisis , Cadmio/análisis , Mercurio/análisis , Límite de Detección , Análisis Espectral/métodos , Microondas
3.
ACS Sens ; 9(5): 2540-2549, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38635557

RESUMEN

Clinical diagnosis of ovarian cancer lacks high accuracy due to the weak selection of specific biomarkers along with the circumstance biomarkers localization. Clustering analysis of proteins transported on exosomes enables a more precise screening of effective biomarkers. Herein, through bioinformatics analysis of ovarian cancer and exosome proteomes, two coexpressed proteins, EpCAM and CD24, specifically enriched, were identified, together with the development of an as-derived dual-aptamer targeted exosome-based strategy for ovarian cancer screening. In brief, a DNA ternary polymer with aptamers targeting EpCAM and CD24 was designed to present a logic gate reaction upon recognizing ovarian cancer exosomes, triggering a rolling circle amplification chemiluminescent signal. A dynamic detection range of 6 orders of magnitude was achieved by quantifying exosomes. Moreover, for clinical samples, this strategy could accurately differentiate exosomes from healthy persons, other cancer patients, and ovarian cancer patients, enabling promising in situ detection. By accurately selecting biomarkers and constructing a dual-targeted exosomal protein detection strategy, the limitation of insufficient specificity of traditional protein markers was circumvented. This work contributed to the development of exosome-based prognosis monitoring in ovarian cancer through the identification of disease-specific exosome protein markers.


Asunto(s)
Aptámeros de Nucleótidos , Exosomas , Neoplasias Ováricas , Neoplasias Ováricas/diagnóstico , Femenino , Humanos , Exosomas/química , Exosomas/metabolismo , Aptámeros de Nucleótidos/química , Biomarcadores de Tumor , Molécula de Adhesión Celular Epitelial , Antígeno CD24/metabolismo , Técnicas Biosensibles/métodos
4.
Analyst ; 149(7): 2097-2102, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38421038

RESUMEN

In this work, we developed a rapid and sensitive label-free ratiometric fluorescent (FL) probe for the detection of bleomycin (BLM). The probe consists of a DNA sequence (D6) and two fluorophore groups, 2-amino-5,6,7-trimethyl-1,8-naphthalene (ATMND) and SYBR Green I (SGI). The D6 sequence could be folded into a three-way junction structure containing a C-C mismatch position in the junction pocket. The unique "Y" structure not only could entrap ATMND in the mismatch pocket with high affinity, leading to FL quenching at 408 nm, but also embed SGI in the grooves of the double-stranded portion, resulting in FL enhancement at 530 nm. In the presence of BLM-Fe(II), the "Y" structure of D6 was destroyed due to the specific cleavage of the BLM recognition site, the 5'-GT-3' site in D6. This caused the release of ATMND and SGI and thus the ratiometric signal change of FL enhancement by ATMND and FL quenching by SGI. Under optimal conditions, the ratiometric probe exhibited a linear correlation between the intensity ratio of F408/F530 and the concentration of BLM in the range of 0.5-1000 nM, with a detection limit of 0.2 nM. In addition, the probe was applied to detect BLM in human serum samples with satisfactory results, indicating its good clinical application potential.


Asunto(s)
Benzotiazoles , Bleomicina , Diaminas , Colorantes Fluorescentes , Quinolinas , Humanos , Colorantes Fluorescentes/química , Límite de Detección , Espectrometría de Fluorescencia/métodos
5.
Mikrochim Acta ; 190(12): 487, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010451

RESUMEN

A new ratiometric fluorescent probe for efficient determination of ALP was developed. The probe was constructed by combining Ce3+-crosslinked copper nanoclusters (Ce3+-CuNCs) which exhibit the aggregation-induced emission (AIE) feature with carbon dots (CDs). The introduction of phosphate (Pi) induced the generation of CePO4 precipitation, resulting in significant decrease of fluorescence emission of CuNCs at 634 nm. At the same time, the fluorescence of CDs at 455 nm was obviously enhanced, thus generating ratiometric fluorescence response. Based on the fact that the hydrolysis of pyrophosphate (PPi) by ALP can produce Pi, the CD/Ce3+-CuNCs ratiometric probe was successfully used to determine ALP. A good linear relationship between the ratiometric value of F455/F634 and ALP concentrations ranging from 0.2 to 80 U·L- 1 was obtained, with a low detection limit of 0.1 U·L- 1. The ratiometric responses of the probe resulted in the visible fluorescence color change from orange red to blue with the increase of ALP concentration. The smartphone-based RGB recognition of the fluorescent sample images was used for ALP quantitative determination. A novel ratiometric fluorescent system based on Ce3+-CuNCs with AIE feature and CDs were constructed for efficient detection of ALP.


Asunto(s)
Puntos Cuánticos , Cobre , Fosfatasa Alcalina , Carbono , Fluorescencia
6.
Chem Sci ; 14(35): 9350-9359, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37712028

RESUMEN

Physiological calcification of the treated tumor area is considered to be a predictor of good prognosis. Promoting tumor calcification by inducing mitochondrial metabolic disorder and destroying calcium equilibrium has a potential inhibitory effect on tumor proliferation. Here, by promoting calcification by inducing mitochondrial dysfunction combined with triggering a surge of reactive oxygen species, we construct a bioresponsive calcification initiator, termed CaP-AA, using CaHPO4 covalently doped l-ascorbic acid. CaHPO4 releases Ca2+ within the cytoplasm of tumor cells to trigger calcium overload. Meanwhile, exogenous l-ascorbic acid indirectly enhances metabolic balance disruption via pro-oxidant effects. Such Ca2+ overload increases the likelihood of tumor calcification in vivo for tumor inhibition by perturbing mitochondrial homeostasis. The introduction of responsive calcium sources that would, in turn, trigger intratumoral calcification mediated by perturbing mitochondrial homeostasis would be an effective regulatory strategy for tumor therapy.

7.
ACS Sens ; 8(5): 2021-2029, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37167101

RESUMEN

Sulfatase is an important biomarker closely associated with various diseases. However, the state-of-the-art sulfatase probes are plagued with a short absorption/emission wavelength and limited sensitivity. Developing highly sensitive fluorescent probes for in vivo imaging of sulfatase remains a grand challenge. Herein, for the first time, an activatable near-infrared fluorescence/photoacoustic (NIRF/PA) dual-modal probe (Hcy-SA) for visualizing sulfatase activity in living cells and animals is developed. Hcy-SA is composed of a sulfate ester moiety as the recognition unit and a NIR fluorophore hemicyanine (Hcy-OH) as the NIRF/PA reporter. The designed probe exhibits a rapid response, excellent sensitivity, and high specificity for sulfatase detection in vitro. More importantly, cells and in vivo experiments confirm that Hcy-SA can be successfully applied for PA/NIRF dual-modal imaging of sulfatase activity in living sulfatase-overexpressed tumor cells and tumor-bearing animals. This probe can serve as a promising tool for sulfatase-related pathological research and cancer diagnosis.


Asunto(s)
Diagnóstico por Imagen , Neoplasias , Animales , Análisis Espectral , Colorantes Fluorescentes
8.
Anal Chem ; 95(18): 7170-7177, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37114482

RESUMEN

Single-excitation ratio fluorescent probes have enabled the output signal with high signal-to-noise ratio, but are still plagued with technique challenges, including signal distortion and limited application scenario. Herein, a dual-excitation near-infrared (NIR) fluorescent probe P1 of coumarin derivatives is constructed, showing high signal output ability in the visible region and high tissue penetration depth ability in the NIR region. As NIR probe P1 selectively recognizes ClO-, the emission signal in the visible region (480 nm) of P1 is enhanced during the recognition process. Meanwhile, the NIR emission (830 nm) of the conjugated system is weakened, finally realizing that ClO- triggered the dual-excitation (720/400 nm) ratio fluorescence signal detection and monitoring. The signal of detection in vitro has high responsiveness. Meanwhile, in the process of NIR monitoring in vivo, positive contrast imaging of fluorescence is constructed, which can accurately monitor ClO- changes over time. The current dual-excitation fluorescence-based data calibration and/or comparison method improves the application of the traditional single-excitation ratio fluorescence strategy and provide innovative detection tools for accurate measurement of fluorescence detection, with detection/monitoring modes suitable for different physiological environments.


Asunto(s)
Diagnóstico por Imagen , Colorantes Fluorescentes , Relación Señal-Ruido
9.
Biosens Bioelectron ; 208: 114215, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35358774

RESUMEN

DNA-templated silver nanoclusters (DNA/AgNCs) serve as a useful electrochemical sensing nanomaterial characterized by excellent electroactivity and good stability, while the effect of surrounding nucleotides on their electroactivity has not been studied. Herein, we validated a nucleotide-assisted enhancement mechanism of the DNA/AgNCs electroactivity caused by T-rich nucleic acid sequences in the vicinity of AgNCs. Based on the T-rich nucleic acid-enhanced AgNCs (NAE-AgNCs) combined with hybrid chain reaction (HCR), a novel signal-enhanced electrochemical biosensing platform was established for the ultrasensitive detection of miRNA. In the presence of target miRNA-155, HCR could be triggered to generate duplex strands containing both numerous AgNC synthesis sites and T-rich overhang strands upon the electrode. With the electrodeposition of adjacent AgNCs on the electrode, the larger oxidation potential of T-rich nucleic acid leaded to stronger electron-accepting capacity, which could contribute to increased current responses. The T-rich NAE HCR electrochemical strategy resulted in a detection limit of 0.39 fM for miRNA-155 detection, one order of magnitude lower than conventional HCR-based electrochemical sensors. This T-rich nucleic acid-assisted enhancement mechanism provided a new direction to construct highly sensitive, label-free, low-cost, and simple sensing platforms for applications in biomarker assays and clinic diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Ácidos Nucleicos , Técnicas Biosensibles/métodos , ADN/química , Límite de Detección , Nanopartículas del Metal/química , MicroARNs/genética , Plata/química
10.
Small ; 17(28): e2100766, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34110695

RESUMEN

The high proliferation efficiency, redox imbalance, and elevated nucleic acid repair capabilities of tumor cells severely restrict the theranostic efficacy. Selectively interference chaotic tumors with devastating nucleic acid damages (NUDs) properties are expected to overcome theranostic barriers. Here, an exquisite catalytic-based strategy with comprehensive NUDs mechanisms is demonstrated. In this regard, enzyme (glucose oxidase, GOD) symbioses nanozyme Cu3+x (PO4 )2 through biomineralization (abbreviated as Cu@GOD), GOD can disorder the metabolism by consuming glucose, thereby inhibiting the nutrition supply for nucleic acid repair. GOD-catalyzed H2 O2 guarantees the self-cyclic glutathione depletion and reactive oxygen species generation caused by Cu3+x (PO4 )2 , resulted the reduced antioxidation defense and enhanced oxidation assault, ensures an indiscriminate NUDs ability. Moreover, the high photothermal effect of Cu3+x (PO4 )2 induces effective tumor inhibition. Consequently, this substantial multipath NUDs strategy, with potentials of suppressing the cytoprotective mechanisms, amplifying the cellular oxidative stress, and disrupting the redox balance to ensure substantial irreversible NUDs, completely breaks the obstacle of chaotic tumors, providing new conceptual thinking for tumor proliferation inhibition.


Asunto(s)
Neoplasias , Ácidos Nucleicos , Catálisis , Glucosa Oxidasa , Humanos , Microambiente Tumoral
11.
Biosens Bioelectron ; 99: 653-659, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28843936

RESUMEN

Enzyme inhibition based drug screening strategy has been widely employed for new drug discovery. But this strategy faces some challenges in practical application especially for the trace active compound screening from natural products such as the stability of enzyme and the sensitivity of screening approach. Inspired by the above, we for the first time demonstrate the self-assembly of α-glucosidase (GAA) and glucose oxidase (GOx) into one multi-enzymes-inorganic nanoreactor with hierarchical structure (flower shape). The hybrid enzyme nanoreactor enjoys the merits including the character of assembly line, the enhanced enzymatic activity and robust stability. The flower shape of enzyme nanoreactor possessed a bigger specific surface area, facilitating the trace GAA inhibitor detection. Based on the above, we proposed an enzyme nanoreactor mediated plasmonic sensing strategy for anti-diabetic drug screening. First, maltose was chosen as the substrate for GAA and the generated glucose were immediately utilized by GOx to generate H2O2, and finally, H2O2 etched the Ag nanoprism to round nanodiscs, resulting in the blue shift of surface plasmon resonance (SPR) absorption band. With the aid of hybrid enzyme nanoreactor guided SPR, the ultrasensitive screening of GAA inhibitor (i.e. anti-diabetic drug) can be realized with the detection limit of 5nM for acarbose. The proposed approach was successfully utilized for GAA inhibitor screening from natural products. We anticipate that the proposed sensing method may provide new insights and inspirations in the enzyme inhibition based drug discovery and clinical diagnosis.


Asunto(s)
Fármacos Antidiuréticos/aislamiento & purificación , Técnicas Biosensibles , Evaluación Preclínica de Medicamentos/métodos , Glucosa/aislamiento & purificación , Fármacos Antidiuréticos/uso terapéutico , Glucosa Oxidasa/química , Oro/química , Humanos , Peróxido de Hidrógeno/química , Maltosa/química , Nanopartículas del Metal/química , Nanoestructuras/química , Resonancia por Plasmón de Superficie , alfa-Glucosidasas/química
12.
Anal Chim Acta ; 973: 91-99, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28502432

RESUMEN

Recently, α-glucosidase inhibitor has been widely used in clinic for diabetic therapy. In the present study, a facile and sensitive fluorescent assay based on enzyme activated inner filter effect (IFE) on nitrogen-doped carbon dots (CDs) was first developed for the detection of α-glucosidase. The N-doped CDs with green emission were prepared by a one-step hydrothermal synthesis and gave the fluorescence quantum yield of 30%, which were used as the signal output. Through α-glucosidase catalysis, 4-nitrophenol was released from 4-nitrophenyl-α-d-glucopyranoside (NGP). Interestingly, the absorption of 4-nitrophenol and the excitation of CDs were completely overlapping. Due to its great molar absorptivity, 4-nitrophenol was capable of acting as a powerful absorber to affect the fluorescent signal of CDs (i.e. IFE). By converting the absorption signals into fluorescence signals, the facile fluorescence assay strategy could be realized for α-glucosidase activity sensing, which effectively avoided the complex modification of the surface of CDs or construction of the nanoprobes. The established IFE-based sensing platform offered a low detection limit of 0.01 U/mL (S/N = 3). This proposed sensing approach has also been expanded to the inhibitor screening and showed excellent applicability. As a typical α-glucosidase inhibitor, acarbose was investigated with a low detection limit of 10-8 M. This developed method enjoyed many merits including simplicity, lost cost, high sensitivity, good reproducibility and excellent selectivity, which also provided a new insight on the application of CDs to develop the facile and sensitive biosensor.


Asunto(s)
Carbono , Descubrimiento de Drogas , Puntos Cuánticos , alfa-Glucosidasas/análisis , Hipoglucemiantes/análisis , Reproducibilidad de los Resultados
13.
Talanta ; 165: 677-684, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28153316

RESUMEN

A rapid, facile and ultrasensitive fluorescence sensing system based on nitrogen-doped carbon dots (N-doped CDs) for the detection of ascorbic acid (AA) was developed. The highly photoluminescent N-doped CDs with excellent solubility in water and good biocompatibility were prepared by a one-step hydrothermal synthesis and gave the fluorescence quantum yield of 47%. The addition of AA can intensively suppress the fluorescence of the N-doped CDs through the synergistic effect of the inner filter effect (IFE) and the static quenching effect (SQE). Benefited from the remarkable synergistic effect of IFE and SQE, a facile and ultrasensitive sensor was constructed successfully for AA sensing. The detection procedure was achieved within 2min. The linear response range of AA was obtained from 10-3 to 10-8 M with a detection limit of 5nM. This developed method enjoyed many merits including more simplicity, lost cost, high sensitivity, good selectivity, rapid response and excellent biocompatibility. Notably, the proposed fluorescent sensor exhibits excellent performance and applicability for AA determination in human serum and rat brain microdialysate, and may provide a fast yet facile route for AA detection in physiological and pathological fields.


Asunto(s)
Ácido Ascórbico/análisis , Técnicas Biosensibles/métodos , Encéfalo/metabolismo , Carbono/química , Colorantes Fluorescentes/química , Neoplasias/sangre , Puntos Cuánticos , Animales , Estudios de Casos y Controles , Fluorescencia , Voluntarios Sanos , Humanos , Límite de Detección , Masculino , Microdiálisis , Ratas , Ratas Sprague-Dawley , Espectrometría de Fluorescencia
14.
Biosens Bioelectron ; 85: 358-362, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27196253

RESUMEN

Early detection and diagnosis have great practical significances for the effective prevention and treatment of cancer. In this study, we developed a novel, facile and ultra-sensitive fluorescence assay for the determination of tumor invasive biomarker ß-glucuronidase (GLU) based on the inner-filter effect (IFE). The nitrogen-doped carbon quantum dots (N-CQDs) with green photoluminescence were employed as the fluorophore in IFE, and 4-nitrophenyl-ß-D-glucuronide (PNPG) was used to act as GLU substrate, and GLU catalytic product (p-nitrophenol (PNP)) was capable of acting as the robust absorber in IFE to turn off the fluorescence of N-CQDs due to the complementary overlap between the absorption of PNP and the excitation of N-CQDs. Thus, signal of GLU activity could be recorded by the fluorescence intensity of N-CQDs. Unlike other fluorescence sensing mechanism such as fluorescence resonance energy transfer (FRET) or photoinduced electron transfer (PET), IFE has no requirement for electron or energy transfer process or any chemical modification of fluorophore, which makes our assay more flexible and simple. The proposed method exhibited a good linear relationship from 1UL(-1) to 60UL(-1) (R(2)=0.9967) with a low detection limit of 0.3UL(-1). This method was also successfully applied to the analysis of serum samples and the inhibitor screening from natural product. The developed sensor platform was proven to be reliable, facile, sensitive, and selective, making it promising as a candidate for GLU activity detection in clinic tumor diagnose and anti-tumor drug screening.


Asunto(s)
Carbono/química , Inhibidores Enzimáticos/farmacología , Colorantes Fluorescentes/química , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/sangre , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Técnicas Biosensibles/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Pruebas de Enzimas/métodos , Glucuronidasa/análisis , Humanos , Límite de Detección , Nitrógeno/química
15.
Biosens Bioelectron ; 79: 728-35, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26774085

RESUMEN

The medicines targeted at α-glucosidase played an important role in anti-diabetes and anti-HIV therapy. Unfortunately, the method based on fluorescent assay strategy for α-glucosidase inhibitor screening remains poorly investigated. In this study, a novel "Turn On" fluorescence sensor platform has been developed for trace α-glucosidase inhibitor screening from natural medicines. Firstly, carbon dots were prepared by one-pot synthesis and used as the signal output. Combining with the carbon dots, cobalt oxyhydroxide (CoOOH) nanoflakes were employed to build the fluorescence resonance energy transfer (FRET) based sensor platform. Secondly, L-ascorbic acid-2-O-α-D-glucopyranosyl (AAG) was innovatively introduced as α-glucosidase substrate. With hydrolysis of AAG by α-glucosidase, ascorbic acids (AA) were released that can rapidly reduce CoOOH nanoflakes to Co(2+), and then FRET was stopped accompanying with the fluorescence recovery of CDs. The sensor platform was ultrasensitive to AA with a detection limit of 5 nM, ensuring the sensitive monitoring of enzyme activity. Acarbose was used as the inhibitor model and its inhibition rate is proportional to the logarithm of concentration in range of 10(-9)-10(-3)M with the correlation coefficient of R(2)=0.996, and an ultralow limit of detection of ~1×10(-9)M was obtained. The inhibiting ability of seven compounds isolated from natural medicines was also evaluated. The constructed sensor platform was proven to be sensitive and selective as well as cost-effective, facile and reliable, making it promising as a candidate for trace α-glucosidase inhibitor screening.


Asunto(s)
Acarbosa/farmacología , Carbono/química , Cobalto/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Inhibidores de Glicósido Hidrolasas/farmacología , Nitrógeno/química , Óxidos/química , alfa-Glucosidasas/metabolismo , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura
16.
J Sci Food Agric ; 96(8): 2867-73, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26362912

RESUMEN

BACKGROUND: Currently, commercially prepared complementary foods have become an important part of the diet of many infants and toddlers. But the method for simultaneous analysis of different types of micronutrient remains poorly investigated, which hinders the rapid and comprehensive quality control of infant foods. In the presented study, we first tried to employ the fluorescence labeling strategy combined with high-performance liquid chromatography-fluorescence detection for simultaneous determination of some acidic micronutrients including biotin, nicotinic acid, linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, arachidonic acid and linoleic acid in infant foods. RESULTS: 2-(5-Benzoacridine) ethyl-p-toluenesulfonate was used as the fluorescence labeling reagent for simultaneous labeling of the seven components. The labeling conditions were optimized systematically by response surface methodology. The correlation coefficients for the calibration curves of the tested compounds ranged from 0.9991 to 0.9998. Limits of detection were in the range of 1.99-3.05 nmol L(-1) . Relative standard deviation values of retention time and peak area of seven compounds were less than 0.05% and 0.75%, respectively. The intra- and inter-day precision was in the range of 1.81-3.80% and 3.21-4.30%, respectively. When applied to analysis of several infant foods it showed good applicability. CONCLUSION: The developed method has been proven to be simple, inexpensive, selective, sensitive, accurate and reliable for analysis of some acidic micronutrients in infant foodstuffs. Furthermore, this developed method also has powerful potential in the analysis of many other complementary foodstuffs. © 2015 Society of Chemical Industry.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Fluorescencia , Análisis de los Alimentos/métodos , Alimentos Infantiles/análisis , Micronutrientes/química , Colorantes Fluorescentes , Humanos , Concentración de Iones de Hidrógeno , Lactante
17.
J Sep Sci ; 38(2): 187-96, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25392973

RESUMEN

Plant hormone determination in food matrices has attracted more and more attention because of their potential risks to human health. However, analytical methods for the analysis of multiple plant hormones remain poorly investigated. In the present study, a convenient, selective, and ultrasensitive high-performance liquid chromatography method for the simultaneous determination of multiple classes of plant hormones has been developed successfully using dispersive liquid-liquid microextraction followed by precolumn fluorescent labeling. Eight plant hormones in fruits including jasmonic acid, 12-oxo-phytodienoic acid, indole-3-acetic acid, 3-indolybutyric acid, 3-indolepropionic acid, gibberellin A3 , 1-naphthylacetic acid, and 2-naphthaleneacetic acid were analyzed by this method. The conditions employed for dispersive liquid-liquid microextraction were optimized systematically. The linearity for all plant hormones was found to be >0.9993 (R(2) values). This method offered low detection limits of 0.19-0.44 ng/mL (at a signal-to-noise ratio of 3), and method accuracies were in the range of 92.32-103.10%. The proposed method was applied to determine plant hormones in five kinds of food samples, and this method can achieve a short analysis time, low threshold levels of detection, and a high specificity for the analysis of targeted plant hormones present at trace level concentrations in complex matrices.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Colorantes Fluorescentes , Frutas/química , Microextracción en Fase Líquida/métodos , Reguladores del Crecimiento de las Plantas/análisis , Espectrometría de Fluorescencia/métodos , Concentración de Iones de Hidrógeno , Límite de Detección , Espectrometría de Masas , Concentración Osmolar , Estándares de Referencia , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...