RESUMEN
In the first postnatal month, the developing mouse intestine shifts from an immature to a mature intestine that will sustain the organism throughout the lifespan. Here, we surveyed the mouse intestine in C57Bl/6 mice by RNA-Seq to evaluate the changes in gene expression over time from the day of birth through 1 month of age in both the duodenum and ileum. We analyzed gene expression for changes in gene families that correlated with the periods of NEC susceptibility or resistance. We highlight that increased expression of DNA processing genes and vacuolar structure genes, tissue development and morphogenesis genes, and cell migration genes all correlated with NEC susceptibility, while increases in immunity gene sets, intracellular transport genes, ATP production, and intracellular metabolism genes correlated with NEC resistance. Using trends identified in the RNA analyses, we further evaluated expression of cellular markers and epithelial regulators, immune cell markers, and adenosine metabolism components. We confirmed key changes with qRT-PCR and immunofluorescence. In addition, we compared some findings to humans using human intestinal biopsies and organoids. This dataset can serve as a reference for other groups considering the role of single molecules or molecular families in early intestinal and postnatal development.
RESUMEN
Histone H3-mutant gliomas are deadly brain tumors characterized by a dysregulated epigenome and stalled differentiation. In contrast to the extensive datasets available on tumor cells, limited information exists on their tumor microenvironment (TME), particularly the immune infiltrate. Here, we characterize the immune TME of H3.3K27M and G34R/V-mutant gliomas, and multiple H3.3K27M mouse models, using transcriptomic, proteomic and spatial single-cell approaches. Resolution of immune lineages indicates high infiltration of H3-mutant gliomas with diverse myeloid populations, high-level expression of immune checkpoint markers, and scarce lymphoid cells, findings uniformly reproduced in all H3.3K27M mouse models tested. We show these myeloid populations communicate with H3-mutant cells, mediating immunosuppression and sustaining tumor formation and maintenance. Dual inhibition of myeloid cells and immune checkpoint pathways show significant therapeutic benefits in pre-clinical syngeneic mouse models. Our findings provide a valuable characterization of the TME of oncohistone-mutant gliomas, and insight into the means for modulating the myeloid infiltrate for the benefit of patients.
Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Mutación , Células Mieloides , Microambiente Tumoral , Animales , Glioma/genética , Glioma/inmunología , Glioma/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Células Mieloides/metabolismo , Células Mieloides/inmunología , Histonas/metabolismo , Histonas/genética , Ratones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Humanos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula IndividualRESUMEN
Understanding when host-microbiome interactions are first established is crucial for comprehending normal development and identifying disease prevention strategies. Furthermore, bacterially derived metabolites play critical roles in shaping the intestinal immune system. Recent studies have demonstrated that memory T cells infiltrate human intestinal tissue early in the second trimester, suggesting that intestinal immune education begins in utero. Our previous study reported a unique fetal intestinal metabolomic profile with an abundance of several bacterially derived metabolites and aryl hydrocarbon receptor (AHR) ligands implicated in mucosal immune regulation. To follow up on this work, in the current study, we demonstrate that a number of microbial byproducts present in fetal intestines in utero are maternally derived and vertically transmitted to the fetus. Notably, these bacterially derived metabolites, particularly short chain fatty acids and secondary bile acids, are likely biologically active and functional in regulating the fetal immune system and preparing the gastrointestinal tract for postnatal microbial encounters, as the transcripts for their various receptors and carrier proteins are present in second trimester intestinal tissue through single-cell transcriptomic data.
RESUMEN
Background: Respiratory Syncytial Virus (RSV) is associated with significant neonatal and infant morbidity and mortality. Maternal bivalent RSVpreF RSV vaccination to protect neonates and infants was approved in September 2023 for administration between 32+0 and 36+6 weeks to protect neonates and infants. This approved timeframe is narrower than the 24-36 week window evaluated in the clinical trial, due to the possible association between preterm birth and vaccine administration. Currently, data are lacking on how maternal vaccine timing within the approved window affects the transfer of antibodies from mother to fetus, critical information that could influence clinical practice. Objectives: We sought to examine how gestational age at vaccination and time elapsed from maternal RSV vaccination to delivery impacted transfer of maternal antibodies measured in the umbilical cord at delivery and in peripheral blood of 2-month infants. We also examined differences in maternal and cord RSV antibody levels achieved by vaccination versus natural RSV infection. Study Design: A prospective cohort study was conducted at two academic medical centers between September 20, 2023 and March 21, 2024, enrolling 124 individuals who received the RSV vaccine during pregnancy. Infant capillary blood was collected at 2 months of age from 29 of the infants. Maternal and cord IgG levels achieved by RSV vaccination were compared to those associated with maternal natural RSV infection, using banked blood from 20 maternal:cord dyads collected prior to the availability of the maternal RSV vaccine. Levels of IgG against RSV strain A2 and B fusion (F) and attachment (G) proteins and against pertussis toxin (as a comparator antigen from a vaccine routinely administered earlier in pregnancy) were measured using a Binding Antibody Multiplex Assay. Differences in titers between vaccination and natural infection were examined using Wilcoxon rank sum test. Differences in cord:maternal transfer ratios and 2-month infant antibody levels by timing of maternal vaccination were evaluated by Kruskal-Wallis testing. Results: Maternal RSV vaccination resulted in significantly higher maternal and cord anti-F RSV antibody levels than natural infection (5.72 vs 4.82 log 10 MFI, p < 0.0001 maternal; 5.81 vs 5.03 log 10 MFI, p < 0.0001 cord). Maternal vaccination 2-3 weeks and 3-4 weeks prior to delivery was associated with significantly lower cord:maternal transfer ratios than were observed when vaccination occurred > 5 weeks prior to delivery (p = 0.03 for 2-3 weeks, p = 0.007 for 3-4 weeks), and significantly lower transfer ratios than observed for pertussis vaccination administered prior to 30 weeks' gestation (p = 0.008 for 2-3 weeks, p = 0.03 for 3-4 weeks, similar at > 4 weeks). Conclusions: Vaccine administration earlier in the approved 32-36 week window (at least 5 weeks prior to delivery) results in the highest transplacental transfer of maternal antibodies to the neonate. These results should inform the counseling of pregnant individuals on optimal vaccination timing.
RESUMEN
Necrotizing enterocolitis (NEC) is one of the most common gastrointestinal conditions affecting 6 to 10% of low-birth-weight infants and remains a leading cause of death. The risk factors associated with NEC are complex and multifactorial, including preterm birth and intrauterine exposure to inflammation and hypoxia. Chorioamnionitis has been associated with intestinal injury in animal and human clinical studies. This review presents current evidence about the clinical impact of the intrauterine environment on intestinal injury during pregnancy and postpregnancy. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus. Prospective multicenter studies, including accurate and precise clinical, maternal, and laboratory predictors (e.g., inflammatory biomarkers), will help identify the mechanisms associated with the placental pathology, the development of NEC, and the impact of in utero-triggered inflammation on the clinical outcomes. Filling the knowledge gap to link the inflammatory surge to postnatal life will aid in identifying at-risk infants for NEC in a timely manner and facilitate the development of novel immunomodulatory treatments or interventions to improve the outcomes of these vulnerable infants. KEY POINTS: · Placental inflammatory and vascular lesions are associated with NEC severity.. · Higher grade chorioamnionitis with a fetal response is associated with an increased risk of surgical NEC.. · There is a need for routine bedside utilization of placenta pathology in clinical decision-making..
RESUMEN
Preeclampsia (PEC) is a complication of pregnancy associated with hypertension and the risk of eclampsia. The pathophysiology of PEC is unknown and identifying factors associated with PEC during pregnancy is crucial for placental, fetal, and maternal health. Renalase (RNLS) is an anti-inflammatory secretory flavoprotein associated with hypertension. Recent data demonstrated a correlation between maternal serum RNLS and PEC, and work from our group identified RNLS expression in the placenta. However, it remains unknown whether RNLS levels in placenta are altered by preeclampsia. Additionally, it is unclear if there is a differential effect of preterm and term PEC on RNLS. We demonstrate that serum RNLS was reduced in preterm cases of PEC. Similarly, placental RNLS was diminished in the chorion of preterm cases of PEC. However, a reduction of RNLS in the decidua was observed with all cases of PEC, while the levels of RNLS within the placental villi were similar in all cases. Overall, we demonstrate that RNLS correlates with PEC both systemically in maternal serum and locally within the placenta, with variable effects on the different layers of the placenta and more pronounced in preterm cases.
RESUMEN
Preclinical human inflammatory bowel disease (IBD) mechanisms is one of 5 focus areas of the Challenges in IBD Research 2024 document, which also includes environmental triggers, novel technologies, precision medicine, and pragmatic clinical research. Herein, we provide a comprehensive overview of current gaps in inflammatory bowel diseases research that relate to preclinical research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in IBD interception, remission, and restoration. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders and represents a valuable resource for patient-centric research prioritization. This preclinical human IBD mechanisms section identifies major research gaps whose investigation will elucidate pathways and mechanisms that can be targeted to address unmet medical needs in IBD. Research gaps were identified in the following areas: genetics, risk alleles, and epigenetics; the microbiome; cell states and interactions; barrier function; IBD complications (specifically fibrosis and stricturing); and extraintestinal manifestations. To address these gaps, we share specific opportunities for investigation for basic and translational scientists and identify priority actions.
To address the unmet medical needs of patients with inflammatory bowel diseases (IBD) and move toward cures, preclinical human-relevant research must center on mechanistic questions pertinent to patients with IBD in the 3 areas of disease interception, remission, and restoration.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Animales , Microbioma Gastrointestinal , Investigación Biomédica , Medicina de Precisión/métodosRESUMEN
Proper development of mucosal immunity is critical for human health. Over the past decade, it has become evident that in humans, this process begins in utero. However, there are limited data on the unique features and functions of fetal mucosal immune cells. To address this gap, we integrated several single-cell ribonucleic acid sequencing datasets of the human small intestine (SI) to create an SI transcriptional atlas throughout the human life span, ranging from the first trimester to adulthood, with a focus on immune cells. Fetal SI displayed a complex immune landscape comprising innate and adaptive immune cells that exhibited distinct transcriptional programs from postnatal samples, especially compared with pediatric and adult samples. We identified shifts in myeloid populations across gestation and progression of memory T-cell states throughout the human lifespan. In particular, there was a marked shift of memory T cells from those with stem-like properties in the fetal samples to fully differentiated cells with a high expression of activation and effector function genes in adult samples, with neonatal samples containing both features. Finally, we demonstrate that the SI developmental atlas can be used to elucidate improper trajectories linked to mucosal diseases by implicating developmental abnormalities underlying necrotizing enterocolitis, a severe intestinal complication of prematurity. Collectively, our data provide valuable resources and important insights into intestinal immunity that will facilitate regenerative medicine and disease understanding.
Asunto(s)
Feto , Intestino Delgado , Análisis de la Célula Individual , Humanos , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Feto/inmunología , Adulto , Niño , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Adolescente , Femenino , Preescolar , Inmunidad Mucosa , Lactante , Recién Nacido , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Transcriptoma , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/genética , Inmunidad Innata , Inmunidad Adaptativa , Perfilación de la Expresión Génica , Embarazo , Diferenciación Celular , Memoria InmunológicaRESUMEN
Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet's- and inflammatory bowel disease (IBD)-like disorder termed "deficiency in ELF4, X-linked" (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα.
Asunto(s)
Artritis , Síndrome de Behçet , Productos Biológicos , Enfermedades Inflamatorias del Intestino , Masculino , Humanos , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/genética , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/genética , Artralgia , Proteínas de Unión al ADN , Factores de Transcripción/genéticaRESUMEN
The gut microbiome has important roles in host metabolism and immunity, and microbial dysbiosis affects human physiology and health. Maternal immunity and microbial metabolites during pregnancy, microbial transfer during birth, and transfer of immune factors, microorganisms and metabolites via breastfeeding provide critical sources of early-life microbial and immune training, with important consequences for human health. Only a few studies have directly examined the interactions between the gut microbiome and the immune system during pregnancy, and the subsequent effect on offspring development. In this Review, we aim to describe how the maternal microbiome shapes overall pregnancy-associated maternal, fetal and early neonatal immune systems, focusing on the existing evidence and highlighting current gaps to promote further research.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Embarazo , Femenino , Recién Nacido , Humanos , Microbioma Gastrointestinal/fisiología , Sistema Inmunológico , Lactancia MaternaRESUMEN
Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression. CYR61 liver-specific knockout mice on a NASH diet showed improved glucose tolerance, decreased liver inflammation, and reduced fibrosis. CYR61 polarized infiltrating monocytes promoting a proinflammatory/profibrotic phenotype through an IRAK4/SYK/NF-κB signaling cascade. In vitro, CYR61 activated a profibrotic program, including PDGFa/PDGFb expression in macrophages, in an IRAK4/SYK/NF-κB-dependent manner. Furthermore, targeted-antibody blockade reduced CYR61-driven signaling in macrophages in vitro and in vivo, reducing fibrotic development. This study demonstrates that CYR61 is a key driver of liver inflammation and fibrosis in NASH.
Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , FN-kappa B/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Hígado/metabolismo , Hepatocitos/metabolismo , Fibrosis , Macrófagos/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BLRESUMEN
The protective benefits of breastmilk are well-appreciated, yet lack mechanistic detail. In this issue of Immunity, Sikder et al. reveal how breastmilk-microbiota-derived propionate induces Flt3L expression, dendritic cell maturation, regulatory T cell recruitment, and antiviral immunity in the lung.
RESUMEN
Necrotizing enterocolitis (NEC) is a gastrointestinal complication of premature infants with high rates of morbidity and mortality. A comprehensive view of the cellular changes and aberrant interactions that underlie NEC is lacking. This study aimed at filling in this gap. We combine single-cell RNA sequencing (scRNAseq), T-cell receptor beta (TCRß) analysis, bulk transcriptomics, and imaging to characterize cell identities, interactions, and zonal changes in NEC. We find an abundance of proinflammatory macrophages, fibroblasts, endothelial cells as well as T cells that exhibit increased TCRß clonal expansion. Villus tip epithelial cells are reduced in NEC and the remaining epithelial cells up-regulate proinflammatory genes. We establish a detailed map of aberrant epithelial-mesenchymal-immune interactions that are associated with inflammation in NEC mucosa. Our analyses highlight the cellular dysregulations of NEC-associated intestinal tissue and identify potential targets for biomarker discovery and therapeutics.
Asunto(s)
Enterocolitis Necrotizante , Lactante , Recién Nacido , Humanos , Enterocolitis Necrotizante/genética , Células Endoteliales , Intestino Delgado , Recien Nacido Prematuro , Intestinos , Mucosa IntestinalRESUMEN
Glycogen Storage Disease type 1b (GSD1b) is a rare disease manifesting as hypoglycemia, recurrent infections and neutropenia, resulting from deleterious mutations in the SLC37A4 gene encoding the glucose-6-phosphate transporter. The susceptibility to infections is thought to be attributed not only to the neutrophil defect, though extensive immunophenotyping characterization is currently missing. Here we apply a systems immunology approach utilizing Cytometry by Time Of Flight (CyTOF) to map the peripheral immune landscape of 6 GSD1b patients. When compared to control subjects, those with GSD1b had a significant reduction in anti-inflammatory macrophages, CD16+ macrophages, and Natural Killer cells. Additionally, there was a preference towards a central versus an effector memory phenotype in multiple T cell populations, which may suggest that these changes stem from an inability of activated immune cell populations to undergo the appropriate switch to glycolytic metabolism in the hypoglycemic conditions associated with GSD1b. Furthermore, we identified a global reduction of CD123, CD14, CCR4, CD24 and CD11b across several populations and a multi-cluster upregulation of CXCR3, hinting at a potential role of impaired immune cell trafficking in the context of GSD1b. Taken together, our data indicates that that the immune impairment observed in GSD1b patients extends far beyond neutropenia and encompasses innate and adaptive compartments, which may provide novel insights into the pathogenesis of this disorder.
RESUMEN
Introduction: Spontaneous intestinal perforation (SIP) is a poorly understood severe gastrointestinal complications of prematurity which is poorly understood. Extremely premature infants born prior to 28 weeks' gestation develop a localized perforation of the terminal ileum during the first week of life and therapy involves surgery and cessation of enteral feeds. Little is known regardj g the impact of mucosal immune dysfunction on disease pathogenesis. Methods: We performed mass cytometry time of flight (CyTOF) of small intestinal mucosa of patients with SIP (Gestational age (GA) 24 - 27 weeks, n=8) compared to patients who had surgery for non-SIP conditions (neonatal (GA >36 weeks, n=5 ) and fetal intestine from elective terminations (GA 18-21 weeks, n=4). CyTOF analysis after stimulation of T cells with PMA/Ionomycin was also performed. Results: We noted changes in innate and adaptive mucosal immunity in SIP. SIP mucosa had an expansion of ckit+ neutrophils, an influx of naïve CD4 and CD8 T cells and a reduction of effector memory T cells. SIP T cells were characterized by reduced CCR6 and CXCR3 expression and increased interferon gamma expression after stimulation. Discussion: These findings suggest that previously unrecognized immune dysregulation is associated with SIP and should be explored in future studies.
Asunto(s)
Enterocolitis Necrotizante , Perforación Intestinal , Recién Nacido , Lactante , Humanos , Perforación Intestinal/complicaciones , Perforación Intestinal/patología , Perforación Intestinal/cirugía , Inmunidad Mucosa , Enterocolitis Necrotizante/complicaciones , Recien Nacido Extremadamente Prematuro , Mucosa Intestinal/patología , Análisis de la Célula IndividualRESUMEN
Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.
Asunto(s)
Biomasa , Contaminación de ADN , Feto , Microbiota , Animales , Femenino , Humanos , Embarazo , Líquido Amniótico/inmunología , Líquido Amniótico/microbiología , Mamíferos , Microbiota/genética , Placenta/inmunología , Placenta/microbiología , Feto/inmunología , Feto/microbiología , Reproducibilidad de los ResultadosRESUMEN
Purpose: Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important regulator of necroptosis and inflammatory responses. We present the clinical features, genetic analysis and immune work-up of two patients with infantile-onset inflammatory bowel disease (IBD) resulting from RIPK1 mutations. Methods: Whole exome and Sanger sequencing was performed in two IBD patients. Mass cytometry time of flight (CyTOF) was conducted for in-depth immunophenotyping on one of the patient's peripheral blood mononuclear cells, and compared to control subjects and patients with Crohn's disease. Results: The patients presented with severe colitis and perianal fistulas in the first months of life, without severe/atypical infections. Genetic studies identified pathogenic genetic variants in RIPK1 (Patient 1, A c.1934C>T missense mutation in Exon 11; Patient 2, c.580G>A missense mutation residing in Exon 4). Protein modeling demonstrated that the mutation in Patient 1 displaces a water molecule, potentially disrupting the local environment, and the mutation in Patient 2 may lead to disruption of the packing and conformation of the kinase domain. Immunofluorescence RIPK1 staining in rectal biopsies demonstrated no expression for Patient 1 and minimal expression for Patient 2, compared to controls and patients with active Crohn's disease. Using CyTOF unbiased clustering analysis, we identified peripheral immune dysregulation in one of these patients, characterized by an increase in IFNγ CD8+ T cells along with a decrease in monocytes, dendritic cells and B cells. Moreover, RIPK1-deficient patient's immune cells exhibited decreased IL-6 production in response to lipopolysaccharide (LPS) across multiple cell types including T cells, B cells and innate immune cells. Conclusions: Mutations in RIPK1 should be considered in very young patients presenting with colitis and perianal fistulas. Given RIPK1's role in inflammasome activation, but also in epithelial cells, it is unclear whether IL1 blockade or allogeneic hematopoietic stem cell transplantation can suppress or cure the hyper-inflammatory response in these patients. Additional studies in humans are required to better define the role of RIPK1 in regulating intestinal immune responses, and how treatment can be optimized for patients with RIPK1 deficiency.
Asunto(s)
Colitis , Enfermedad de Crohn , Fístula , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedad de Crohn/genética , Leucocitos Mononucleares , Linfocitos T CD8-positivos , Enfermedades Inflamatorias del Intestino/genética , Mutación , Enfermedad Crónica , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genéticaRESUMEN
Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.
RESUMEN
Placental function requires organized growth, transmission of nutrients, and an anti-inflammatory milieu between the maternal and fetal interface, but placental factors important for its function remain unclear. Renalase is a pro-survival, anti-inflammatory flavoprotein found to be critical in other tissues. We examined the potential role of renalase in placental development. PCR, bulk RNA sequencing, immunohistochemistry, and immunofluorescence for renalase and its binding partners, PMCA4b and PZP, were performed on human placental tissue from second-trimester and full-term placentas separated into decidua, placental villi and chorionic plates. Quantification of immunohistochemistry was used to localize renalase across time course from 17 weeks to term. Endogenous production of renalase was examined in placental tissue and organoids. Renalase and its receptor PMCA4b transcripts and proteins were present in all layers of the placenta. Estimated RNLS protein levels did not change with gestation in the decidual samples. However, placental villi contained more renalase immunoreactive cells in fetal than full-term placental samples. RNLS co-labeled with markers for Hofbauer cells and trophoblasts within the placental villi. Endogenous production of RNLS, PMCA4b, and PZP by trophoblasts was validated in placental organoids. Renalase is endogenously expressed throughout placental tissue and specifically within Hofbauer cells and trophoblasts, suggesting a potential role for renalase in placental development and function. Future studies should assess renalase's role in normal and diseased human placenta.
Asunto(s)
Placenta , Trofoblastos , Vellosidades Coriónicas/metabolismo , Decidua/metabolismo , Femenino , Humanos , Monoaminooxidasa , Placenta/metabolismo , Placentación , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Embarazo , Trofoblastos/metabolismoRESUMEN
Maintenance of a healthy pregnancy is reliant on a successful balance between the fetal and maternal immune systems. Although the maternal mechanisms responsible have been well studied, those used by the fetal immune system remain poorly understood. Using suspension mass cytometry and various imaging modalities, we report a complex immune system within the mid-gestation (17-23â weeks) human placental villi (PV). Consistent with recent reports in other fetal organs, T cells with memory phenotypes, although rare in abundance, were detected within the PV tissue and vasculature. Moreover, we determined that T cells isolated from PV samples may be more proliferative after T cell receptor stimulation than adult T cells at baseline. Collectively, we identified multiple subtypes of fetal immune cells within the PV and specifically highlight the enhanced proliferative capacity of fetal PV T cells.