Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
2.
Sci Rep ; 13(1): 20467, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993492

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severely debilitating neurodegenerative condition that is part of the same disease spectrum as frontotemporal dementia (FTD). Mutations in the CCNF gene, encoding cyclin F, are present in both sporadic and familial ALS and FTD. However, the pathophysiological mechanisms underlying neurodegeneration remain unclear. Proper functioning of the endoplasmic reticulum (ER) and Golgi apparatus compartments is essential for normal physiological activities and to maintain cellular viability. Here, we demonstrate that ALS/FTD-associated variant cyclin FS621G inhibits secretory protein transport from the ER to Golgi apparatus, by a mechanism involving dysregulation of COPII vesicles at ER exit sites. Consistent with this finding, cyclin FS621G also induces fragmentation of the Golgi apparatus and activates ER stress, ER-associated degradation, and apoptosis. Induction of Golgi fragmentation and ER stress were confirmed with a second ALS/FTD variant cyclin FS195R, and in cortical primary neurons. Hence, this study provides novel insights into pathogenic mechanisms associated with ALS/FTD-variant cyclin F, involving perturbations to both secretory protein trafficking and ER-Golgi homeostasis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Mutación , Ciclinas/metabolismo
3.
Addict Biol ; 28(7): e13285, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37369127

RESUMEN

Alcohol dependence is characterized by the abnormal release of dopamine in the brain reward-related areas. Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that negatively regulates dopamine neurotransmission and thus is a promising target in the treatment of drug addiction. However, the role of TAAR1 in the regulation of alcohol abuse remains understudied. Here, we assessed the effect of TAAR1 activation on alcohol drinking behaviours of C57Bl/6J female mice housed in IntelliCages. The animals were administered with either vehicle or TAAR1 full selective agonist, RO5256390, and tested for alcohol consumption, alcohol preference and motivation for alcohol seeking. We found that mice with the highest preference for alcohol (high drinkers) in the RO5256390 group consumed less alcohol and had lower alcohol preference in comparison with high drinkers in the vehicle group, during 20 h of free alcohol access (FAA). We also found decreased alcohol consumption and alcohol preference comparing all animals in the RO5256390 to all animals in the vehicle group, during 20 h of FAA performed after the abstinence. These effects of RO5256390 lasted for the first 24 h after administration that roughly corresponded to the compound level in the brain, measured by mass spectrometry. Finally, we found that administration of RO5256390 may attenuate motivation for alcohol seeking. Taken together, our findings reveal that activation of TAAR1 may transiently reduce alcohol drinking; thus, TAAR1 is a promising target for the treatment of alcohol abuse and relapse.


Asunto(s)
Alcoholismo , Dopamina , Femenino , Ratones , Animales , Receptores Acoplados a Proteínas G/agonistas , Consumo de Bebidas Alcohólicas
4.
Psychiatr Pol ; 57(4): 843-852, 2023 Aug 31.
Artículo en Inglés, Polaco | MEDLINE | ID: mdl-38170650

RESUMEN

Autoimmune encephalitis (AE) is a rare disease manifested by rapidly progressive short-term memory loss and other cognitive impairment accompanied by multiple disorders related to the limbic system involvement. The initial symptoms of autoimmune encephalitis may imitate other psychiatric disorders and delay the implementation of an appropriate treatment. The case description of a 15-year-old patient with an initial diagnosis of psychotic disorder has been presented. Because of atypical course of an illness and an ineffective treatment with psychotropic drugs, additional tests were made including serological tests, a cerebrospinal fluid (CSF) analysis and magnetic resonance imaging. Due to the entire clinical picture an autoimmune encephalitis was suspected. The implemented treatment included steroid therapy, intravenous immunoglobulins (IVIG) and plasmapheresis. The treatment regimen was repeated until remission was achieved.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato , Adolescente , Humanos , Receptores de N-Metil-D-Aspartato/uso terapéutico , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Encefalitis Antirreceptor N-Metil-D-Aspartato/terapia , Inmunoglobulinas Intravenosas/uso terapéutico , Hospitalización
5.
Cells ; 11(24)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552811

RESUMEN

Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules-nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability.


Asunto(s)
Cilios , Tetrahymena , Axonema/metabolismo , Cilios/metabolismo , Dineínas , Proteómica , Tetrahymena/metabolismo
6.
Biomedicines ; 10(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36289728

RESUMEN

Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from brain tissue on the yield of protein extraction and the number and type of extracted proteins. Three different types of buffers were compared-detergent-based buffer (DB), chaotropic agent-based buffer (CAB) and buffer without detergent and chaotropic agent (DFB). Based on label-free quantitative protein analysis, detergent buffer was identified as the most suitable for global proteomic profiling of brain tissue. It allows the most efficient extraction of membrane proteins, synaptic and synaptic membrane proteins along with ribosomal, mitochondrial and myelin sheath proteins, which are of particular interest in the field of neurodegenerative disorders research.

9.
Med Sci Monit ; 28: e937338, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35941808

RESUMEN

BACKGROUND Cinacalcet is a calcium-sensing receptor agonist that is clinically approved for the treatment of secondary hyperparathyroidism in chronic kidney disease and hypercalcemia in patients with parathyroid carcinoma. This study aimed to use quantitative mass spectrometry-based label-free proteomics to evaluate the effects of cinacalcet on protein expression in rat brains and livers. MATERIAL AND METHODS We randomly assigned 18 Wistar rats to 2 groups: an untreated control group (n=6) and a group treated with cinacalcet at a dose corresponding to the maximum dose used in humans (2 mg/kg/body weight, 5 days/week) divided into 7-day (n=6) and 21-day (n=6) treatment subgroups. A mass-spectrometry-based label-free quantitative proteomics approach using peptides peak area calculation was used to evaluate the changes in protein expression in examined tissues. Bioinformatics analysis of quantitative proteomics data was done using MaxQuant and Perseus environment. RESULTS No changes in protein expression were revealed in the 7-day treatment subgroup. We detected 10 upregulated and 3 downregulated proteins in the liver and 1 upregulated protein in the brain in the 21-day treatment subgroup compared to the control group. Based on Gene Ontology classification, all identified differentially expressed proteins were indicated as molecular functions involved in the enzyme regulator activity (36%), binding (31%), and catalytic activity (19%). CONCLUSIONS These findings indicate that long-term cinacalcet therapy can impair phase II of enzymatic detoxication and can cause disturbances in blood hemostasis, lipid metabolism, and inflammatory mediators or contribute to the acceleration of cognitive dysfunction; therefore, appropriate patient monitoring should be considered.


Asunto(s)
Proteómica , Receptores Sensibles al Calcio , Animales , Encéfalo/metabolismo , Calcio , Cinacalcet/farmacología , Cinacalcet/uso terapéutico , Humanos , Hígado/metabolismo , Espectrometría de Masas , Naftalenos , Hormona Paratiroidea , Ratas , Ratas Wistar , Receptores Sensibles al Calcio/metabolismo
10.
Front Cell Neurosci ; 16: 836885, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813507

RESUMEN

Damage to DNA is generally considered to be a harmful process associated with aging and aging-related disorders such as neurodegenerative diseases that involve the selective death of specific groups of neurons. However, recent studies have provided evidence that DNA damage and its subsequent repair are important processes in the physiology and normal function of neurons. Neurons are unique cells that form new neural connections throughout life by growth and re-organisation in response to various stimuli. This "plasticity" is essential for cognitive processes such as learning and memory as well as brain development, sensorial training, and recovery from brain lesions. Interestingly, recent evidence has suggested that the formation of double strand breaks (DSBs) in DNA, the most toxic form of damage, is a physiological process that modifies gene expression during normal brain activity. Together with subsequent DNA repair, this is thought to underlie neural plasticity and thus control neuronal function. Interestingly, neurodegenerative diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Huntington's disease, manifest by a decline in cognitive functions, which are governed by plasticity. This suggests that DNA damage and DNA repair processes that normally function in neural plasticity may contribute to neurodegeneration. In this review, we summarize current understanding about the relationship between DNA damage and neural plasticity in physiological conditions, as well as in the pathophysiology of neurodegenerative diseases.

11.
Animals (Basel) ; 12(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35681892

RESUMEN

Selenium is an essential nutrient, building twenty five identified selenoproteins in humans known to perform several important biological functions. The small amount of selenium in the earth's crust in certain regions along with the risk of deficiency in organisms have resulted in increasingly popular dietary supplementation in animals, implemented via, e.g., inorganic selenium compounds. Even though selenium is included in selenoproteins in the form of selenocysteine, the dietary effect of selenium may result in the expression of other proteins or genes. Very little is known about the expression effects modulated by selenium. The present study aimed to examine the significance of protein expression in lamb tissues obtained after dietary supplementation with selenium (sodium selenate) and two other feed additives, fish oil and carnosic acid. Label-free mass spectrometry-based proteomic analysis was successfully applied to examine the animal tissues. Protein-protein interaction network analysis of forty differently-expressed proteins following inorganic selenium supplementation indicated two significant clusters which are involved in cell adhesion, heart development, actin filament-based movement, plasma membrane repair, and establishment of organelle localization.

12.
Front Aging Neurosci ; 14: 786420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572138

RESUMEN

DNA is under constant attack from both endogenous and exogenous sources, and when damaged, specific cellular signalling pathways respond, collectively termed the "DNA damage response." Efficient DNA repair processes are essential for cellular viability, although they decline significantly during aging. Not surprisingly, DNA damage and defective DNA repair are now increasingly implicated in age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). ALS affects both upper and lower motor neurons in the brain, brainstem and spinal cord, leading to muscle wasting due to denervation. DNA damage is increasingly implicated in the pathophysiology of ALS, and interestingly, the number of DNA damage or repair proteins linked to ALS is steadily growing. This includes TAR DNA binding protein 43 (TDP-43), a DNA/RNA binding protein that is present in a pathological form in almost all (97%) cases of ALS. Hence TDP-43 pathology is central to neurodegeneration in this condition. Fused in Sarcoma (FUS) bears structural and functional similarities to TDP-43 and it also functions in DNA repair. Chromosome 9 open reading frame 72 (C9orf72) is also fundamental to ALS because mutations in C9orf72 are the most frequent genetic cause of both ALS and related condition frontotemporal dementia, in European and North American populations. Genetic variants encoding other proteins involved in the DNA damage response (DDR) have also been described in ALS, including FUS, SOD1, SETX, VCP, CCNF, and NEK1. Here we review recent evidence highlighting DNA damage and defective DNA repair as an important mechanism linked to neurodegeneration in ALS.

13.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457021

RESUMEN

In many pharmaceuticals, a hydrogen atom or hydroxyl group is replaced by a fluorine to increase bioavailability and biostability. The fate of fluorine released from fluorine-containing drugs is not well investigated. The aim of this study was to examine possible fluorination of proteins in rat liver and brain after administration of the fluorinated drug cinacalcet. We assigned 18 Wistar rats to a control group (n = 6) and a group treated with cinacalcet (2 mg kg-1/body weight, 5 days/week), divided into 7 day (n = 6) and 21 day (n = 6) treatment subgroups. Fluorinated proteins were identified using a free proteomics approach; chromatographic separation and analysis by high-resolution mass spectrometry; peptide/protein identification using the Mascot search algorithm; manual verification of an experimentally generated MS/MS spectrum with the theoretical MS/MS spectrum of identified fluorinated peptides. Three fluorinated proteins (spectrin beta chain; carbamoyl-phosphate synthase [ammonia], mitochondrial; 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 1) were identified in the liver and four (spectrin beta chain, dihydropyrimidinase-related protein 4, prominin-2, dihydropyrimidinase-related protein 4) in the brain tissue after 21 days of cinacalcet treatment, but not in the control group. Introduction of fluorine into an organism by administration of fluorinated drugs results in tissue-specific fluorination of proteins.


Asunto(s)
Flúor , Halogenación , Animales , Encéfalo , Cinacalcet , Fluoruros , Flúor/química , Hígado , Preparaciones Farmacéuticas , Ratas , Ratas Wistar , Espectrina , Espectrometría de Masas en Tándem
17.
Artículo en Inglés | MEDLINE | ID: mdl-32827611

RESUMEN

Previous studies have reported on the relationship between gut microbiota and major depressive disorder (MDD). However, there remain gaps in literature concerning the role of the intestinal barrier and microflora in the pathogenesis of depression. This study analyzes the potential causative relationship between gut microbiota and inflammatory and gut integrity markers and clinical symptoms in inpatients with depressive episodes. Sixteen inpatients (50% females) being treated with escitalopram (5-20 mg daily) in standardized conditions were included in the study. The composition of fecal microbiota was evaluated at baseline and endpoint using 16S rRNA sequencing. A significant correlation between depression severity was found, as measured with HDRS24 (Hamilton Depression Rating Scale-24 item), and the following abundance in bacteria: positive correlation with Paraprevotella (r = 0.80, q = 0.012), strong, negative correlations with Clostridiales (r = -0.70, q = 0.016), Clostridia (r = -0.71, q = 0.026), Firmicutes (r = -0.67. q = 0.032), and the RF32 order (r = -0.70, p = 0.016) in the Alphaproteobacteria (r = -0.66, q = 0.031). After six weeks of treatment, clinical outcomes were found to have a negative correlation with levels of plasma intestinal fatty acid-binding protein (IFABP) at the beginning of the study. Still they had a positive correlation with changes in fecal calprotectin during hospitalization. In conclusion, gut microbiota was associated with the severity of depressive symptoms. However, these findings do not serve as predictors of symptomatic improvement during antidepressant treatment in inpatient treatment for MDD. In turn, intestinal integrity and inflammation markers were associated with the response to treatment of patients with MDD and symptom severity. Additional studies are needed to confirm and extend these findings.


Asunto(s)
Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/psicología , Microbioma Gastrointestinal/fisiología , Hospitales Psiquiátricos , Pacientes Internos/psicología , Adulto , Biomarcadores/metabolismo , Estudios de Cohortes , Trastorno Depresivo Mayor/diagnóstico , Femenino , Hospitales Psiquiátricos/tendencias , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Int J Neuropsychopharmacol ; 24(4): 322-332, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33284958

RESUMEN

BACKGROUND: Dysregulation of epigenetic processes might account for alterations of the hypothalamic-pituitary-adrenal axis observed in patients with schizophrenia. Therefore, in this study, we aimed to investigate methylation of the glucocorticoid receptor (NR3C1) gene in patients with schizophrenia-spectrum disorders, individuals at familial high risk of schizophrenia (FHR-P), and healthy controls with respect to clinical manifestation and a history of psychosocial stressors. METHODS: We recruited 40 first-episode psychosis patients, 45 acutely relapsed schizophrenia (SCZ-AR) patients, 39 FHR-P individuals, and 56 healthy controls. The level of methylation at 9 CpG sites of the NR3C1 gene was determined using pyrosequencing. RESULTS: The level of NR3C1 methylation was significantly lower in first-episode psychosis patients and significantly higher in SCZ-AR patients compared with other subgroups of participants. Individuals with FHR-P and healthy controls had similar levels of NR3C1 methylation. A history of adverse childhood experiences was associated with significantly lower NR3C1 methylation in all subgroups of participants. Higher methylation of the NR3C1 gene was related to worse performance of attention and immediate memory as well as lower level of general functioning in patients with psychosis. CONCLUSIONS: Patients with schizophrenia-spectrum disorders show altered levels of NR3C1 methylation that are significantly lower in first-episode psychosis patients and significantly higher in SCZ-AR patients. Higher methylation of the NR3C1 gene might be related to cognitive impairment observed in this clinical population. The association between a history of adverse childhood experiences and lower NR3C1 methylation is not specific to patients with psychosis. Longitudinal studies are needed to establish causal mechanisms underlying these observations.


Asunto(s)
Disfunción Cognitiva , Metilación de ADN/fisiología , Trastornos Psicóticos , Receptores de Glucocorticoides/metabolismo , Esquizofrenia , Adulto , Experiencias Adversas de la Infancia , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Psicóticos/complicaciones , Trastornos Psicóticos/genética , Trastornos Psicóticos/fisiopatología , Recurrencia , Riesgo , Esquizofrenia/complicaciones , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Adulto Joven
19.
Sci Rep ; 10(1): 21314, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277582

RESUMEN

An intra-hippocampus injection of kainic acid serves as a model of status epilepticus and the subsequent development of temporal lobe epilepsy. Matrix metalloproteinase-9 (MMP-9) is an enzyme that controls remodeling of the extracellular milieu under physiological and pathological conditions. In response to brain insult, MMP-9 contributes to pathological synaptic plasticity that may play a role in the progression of an epileptic condition. Marimastat is a metalloproteinase inhibitor that was tested in clinical trials of cancer. The present study assessed whether marimastat can impair the development of epilepsy. The inhibitory efficacy of marimastat was initially tested in neuronal cultures in vitro. As a marker substrate, we used nectin-3. Next, we investigated the blood-brain barrier penetration of marimastat using mass spectrometry and evaluated the therapeutic potential of marimastat against seizure outcomes. We found that marimastat inhibited the cleavage of nectin-3 in hippocampal neuronal cell cultures. Marimastat penetrated the blood-brain barrier and exerted an inhibitory effect on metalloproteinase activity in the brain. Finally, marimastat decreased some seizure parameters, such as seizure score and number, but did not directly affect status epilepticus. The long-term effects of marimastat were evident up to 6 weeks after kainic acid administration, in which marimastat still inhibited seizure duration.


Asunto(s)
Ácidos Hidroxámicos/uso terapéutico , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Estado Epiléptico/tratamiento farmacológico , Animales , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Ácidos Hidroxámicos/farmacocinética , Ácido Kaínico , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacocinética , Ratones Endogámicos C57BL , Nectinas/metabolismo
20.
Mol Neurodegener ; 15(1): 51, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907630

RESUMEN

BACKGROUND: Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in motor neurons of almost all amyotrophic lateral sclerosis (ALS) patients, and mutations in TDP-43 are also present in ALS. Loss and gain of TDP-43 functions are implicated in pathogenesis, but the mechanisms are unclear. While the RNA functions of TDP-43 have been widely investigated, its DNA binding roles remain unclear. However, recent studies have implicated a role for TDP-43 in the DNA damage response. METHODS: We used NSC-34 motor neuron-like cells and primary cortical neurons expressing wildtype TDP-43 or TDP-43 ALS associated mutants (A315T, Q331K), in which DNA damage was induced by etoposide or H2O2 treatment. We investigated the consequences of depletion of TDP-43 on DNA repair using small interfering RNAs. Specific non homologous end joining (NHEJ) reporters (EJ5GFP and EJ2GFP) and cells lacking DNA-dependent serine/threonine protein kinase (DNA-PK) were used to investigate the role of TDP-43 in DNA repair. To investigate the recruitment of TDP-43 to sites of DNA damage we used single molecule super-resolution microscopy and a co-immunoprecipitation assay. We also investigated DNA damage in an ALS transgenic mouse model, in which TDP-43 accumulates pathologically in the cytoplasm. We also examined fibroblasts derived from ALS patients bearing the TDP-43 M337V mutation for evidence of DNA damage. RESULTS: We demonstrate that wildtype TDP-43 is recruited to sites of DNA damage where it participates in classical NHEJ DNA repair. However, ALS-associated TDP-43 mutants lose this activity, which induces DNA damage. Furthermore, DNA damage is present in mice displaying TDP-43 pathology, implying an active role in neurodegeneration. Additionally, DNA damage triggers features typical of TDP-43 pathology; cytoplasmic mis-localisation and stress granule formation. Similarly, inhibition of NHEJ induces TDP-43 mis-localisation to the cytoplasm. CONCLUSIONS: This study reveals that TDP-43 functions in DNA repair, but loss of this function triggers DNA damage and is associated with key pathological features of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Daño del ADN/fisiología , Reparación del ADN por Unión de Extremidades/fisiología , Proteínas de Unión al ADN/metabolismo , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neuronas Motoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA