Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 52(16): 9636-49, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23902514

RESUMEN

The synthesis and characterization of new iron pincer complexes bearing bipyridine-based PNN ligands is reported. Three phosphine-substituted pincer ligands, namely, the known (t)Bu-PNN (6-((di-tert-butylphosphino)methyl)-2,2'-bipyridine) and the two new (i)Pr-PNN (6-((di-iso-propylphosphino)methyl)-2,2'-bipyridine) and Ph-PNN (6-((diphenylphosphino)methyl)-2,2'-bipyridine) ligands were synthesized and studied in ligation reactions with iron(II) chloride and bromide. These reactions lead to the formation of two types of complexes: mono-chelated neutral complexes of the type [(R-PNN)Fe(X)2] and bis-chelated dicationic complexes of the type [(R-PNN)2Fe](2+). The complexes [(R-PNN)Fe(X)2] (1: R = (t)Bu, X = Cl, 2: R = (t)Bu, X = Br, 3: R = (i)Pr, X = Cl, and 4: R = (i)Pr, X = Br) are readily prepared from reactions of FeX2 with the free R-PNN ligand in a 1:1 ratio. Magnetic susceptibility measurements show that these complexes have a high-spin ground state (S = 2) at room temperature. Employing a 2-fold or higher excess of (i)Pr-PNN, diamagnetic hexacoordinated dicationic complexes of the type [((i)Pr-PNN)2Fe](X)2 (5: X = Cl, and 6: X = Br) are formed. The reactions of Ph-PNN with FeX2 in a 1:1 ratio lead to similar complexes of the type [(Ph-PNN)2Fe](FeX4) (7: X = Cl, and 8: X = Br). Single crystal X-ray studies of 1, 2, 4, 6, and 8 do not indicate electron transfer from the Fe(II) centers to the neutral bipyridine unit based on the determined bond lengths. Density functional theory (DFT) calculations were performed to compare the relative energies of the mono- and bis-chelated complexes. The doubly deprotonated complexes [(R-PNN*)2Fe] (9: R = (i)Pr, and 10: R = Ph) were synthesized by reactions of the dicationic complexes 6 and 8 with KO(t)Bu. The dearomatized nature of the central pyridine of the pincer ligand was established by X-ray diffraction analysis of single crystals of 10. Reactivity studies show that 9 and 10 have a slightly different behavior in protonation reactions.


Asunto(s)
2,2'-Dipiridil/química , Compuestos Ferrosos/química , Compuestos Ferrosos/síntesis química , Ligandos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Protones
2.
Chemistry ; 18(23): 7196-209, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22532294

RESUMEN

The new, structurally characterized hydrido carbonyl tetrahydridoborate iron pincer complex [(iPr-PNP)Fe(H)(CO)(η(1)-BH(4))] (1) catalyzes the base-free hydrogenation of ketones to their corresponding alcohols employing only 4.1 atm hydrogen pressure. Turnover numbers up to 1980 at complete conversion of ketone were reached with this system. Treatment of 1 with aniline (as a BH(3) scavenger) resulted in a mixture of trans-[(iPr-PNP)Fe(H)(2)(CO)] (4a) and cis-[(iPr-PNP)Fe(H)(2)(CO)] (4b). The dihydrido complexes 4a and 4b do not react with acetophenone or benzaldehyde, indicating that these complexes are not intermediates in the catalytic reduction of ketones. NMR studies indicate that the tetrahydridoborate ligand in 1 dissociates prior to ketone reduction. DFT calculations show that the mechanism of the iron-catalyzed hydrogenation of ketones involves alcohol-assisted aromatization of the dearomatized complex [(iPr-PNP*)Fe(H)(CO)] (7) to initially give the Fe(0) complex [(iPr-PNP)Fe(CO)] (21) and subsequently [(iPr-PNP)Fe(CO)(EtOH)] (38). Concerted coordination of acetophenone and dual hydrogen-atom transfer from the PNP arm and the coordinated ethanol to, respectively, the carbonyl carbon and oxygen atoms, leads to the dearomatized complex [(iPr-PNP*)Fe(CO)(EtO)(MeCH(OH)Ph)] (32). The catalyst is regenerated by release of 1-phenylethanol, followed by dihydrogen coordination and proton transfer to the coordinated ethoxide ligand.

3.
Inorg Chem ; 49(4): 1615-25, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20067235

RESUMEN

A series of cationic, neutral, and anionic Pd(II) and Pt(II) PNP (PNP = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine) complexes were synthesized. The neutral, dearomatized complexes [(PNP*)MX] (PNP* = deprotonated PNP; M = Pd, Pt; X = Cl, Me) were prepared by deprotonation of the PNP methylene group of the corresponding cationic complexes [(PNP)MX][Cl] with 1 equiv of base (KN(SiMe(3))(2) or (t)BuOK), while the anionic complexes [(PNP**)MX](-)Y(+) (PNP** = double-deprotonated PNP; Y = Li, K) were prepared by deprotonation of the two methylene groups of the corresponding cationic complexes with either 2 equiv of KN(SiMe(3))(2) or an excess of MeLi. While the reaction of [(PNP)PtCl][Cl] with an excess of MeLi led only to the anionic complex without chloride substitution, reaction of [(PNP)PdCl][Cl] with an excess of MeLi led to the methylated anionic complex [(PNP**)PdMe](-)Li(+). NMR studies, X-ray structures, and density functional theory (DFT) calculations reveal that the neutral complexes have a "broken" aromatic system with alternating single and double bonds, and the deprotonated arm is bound to the ring by an exocyclic C=C double bond. The anionic complexes are best described as a pi system comprising the ring carbons conjugated with the exocyclic double bonds of the deprotonated "arms". The neutral complexes are reversibly protonated to their cationic analogues by water or methanol. The thermodynamic parameters DeltaH, DeltaS, and DeltaG for the reversible protonation of the neutral complexes by methanol were obtained.

4.
J Am Chem Soc ; 132(2): 517-23, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20014850

RESUMEN

A ruthenium(II) bipyridine complex with proximal phenylselenium tethers, [Ru](H(2)O)(2), reacted intramolecularly with O(2) in a protic slightly acidic solvent, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), to yield an O-O bond cleaved product, [Ru](O)(2), with formation of two Ru-O-Se moieties. This stable compound was isolated, and its structure was determined by X-ray diffraction. The identification of the compound in solution was confirmed by ESI-MS and the (1)H NMR with the associated Curie plot that showed that [Ru](O)(2) was paramagnetic. The magnetic susceptibility was 2.8 mu(B) by Evan's method suggesting a ground state triplet or biradical. DFT calculations, however, predicted a ground state singlet and an oxidized Se atom. Further it was shown that [Ru](O)(2) is a potent oxygen transfer species of both O(2)-derived atoms to triphenylphosphine and a nucleophilic alkene such as 2,3-dimethyl-2-butene in both HFIP and acetonitrile. UV-vis spectroscopy combined with the measured stoichiometry of PPh(3):O(2) = approximately 2 in a catalytic oxidation of PPh(3) suggests a dioxygenase type activation of O(2) with structural identification of the O-O bond cleavage reaction step, formation of [Ru](O)(2) as an intermediate, and the proof that [Ru](O)(2) is a donor of both oxygen atoms.


Asunto(s)
Dioxigenasas/metabolismo , Compuestos Organometálicos/química , Oxígeno/metabolismo , Piridinas/química , Rutenio/química , Selenio/química , Sitios de Unión , Cristalografía por Rayos X , Dioxigenasas/química , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Oxígeno/química
5.
Science ; 324(5923): 74-7, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19342584

RESUMEN

Discovery of an efficient artificial catalyst for the sunlight-driven splitting of water into dioxygen and dihydrogen is a major goal of renewable energy research. We describe a solution-phase reaction scheme that leads to the stoichiometric liberation of dihydrogen and dioxygen in consecutive thermal- and light-driven steps mediated by mononuclear, well-defined ruthenium complexes. The initial reaction of water at 25 degrees C with a dearomatized ruthenium (II) [Ru(II)] pincer complex yields a monomeric aromatic Ru(II) hydrido-hydroxo complex that, on further reaction with water at 100 degrees C, releases H2 and forms a cis dihydroxo complex. Irradiation of this complex in the 320-to-420-nanometer range liberates oxygen and regenerates the starting hydrido-hydroxo Ru(II) complex, probably by elimination of hydrogen peroxide, which rapidly disproportionates. Isotopic labeling experiments with H2 17O and H2 18O show unequivocally that the process of oxygen-oxygen bond formation is intramolecular, establishing a previously elusive fundamental step toward dioxygen-generating homogeneous catalysis.

6.
Inorg Chem ; 48(9): 4021-30, 2009 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-19338319

RESUMEN

Four analogous platinum stilbene- and stilbazole-based complexes exhibit unusual long-range heteronuclear spin-spin coupling in solution. Single crystal analysis and NMR experiments show that the (19)F, (31)P, and (195)Pt nuclei communicate over large distances (0.9-1.3 nm) through bond rather than through space. Spin-spin couplings between (195)Pt and (19)F over seven bonds and between (31)P and (19)F over eight bonds are observed with (7)J(PtF) = 2.9 Hz and (8)J(PF) = 11.8 Hz. Remarkably, a very large spin coupling between (195)Pt and (19)F over six bonds ((6)J(PtF) = 40.1 Hz) is also observed in a structurally related pyridinium complex. Experimental and gNMR (version 5.0) simulated (19)F{(1)H}, (31)P{(1)H}, and (195)Pt{(1)H} spectra of the complexes reveal a three-spin AMY system (A = (31)P, M = (31)P, Y = (19)F) or a five-spin AMY(3) flanked by a four-spin AMXY or a six-spin AMXY(3) system (X = (195)Pt), respectively. Density functional theory calculations at the PBE0/SDD level of theory show a pi-conjugated metal-ligand network, which may contribute to the experimentally observed spin-spin interactions.

7.
Inorg Chem ; 47(16): 7177-89, 2008 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-18637675

RESUMEN

Aiming at the generation of a silanone intramolecularly bound to platinum, we prepared pincer-type PSiP silanol Pt(II) complexes. While a stable silanone complex was not isolated, unusual reactivity modes, involving its possible intermediacy, were observed. Treatment of the new PSiH 2P-type ligand ( o-IPr 2PC 6H 4) 2SiH 2 ( 7) with (Me 2S) 2Pt(Me)Cl yields the pincer-type hydrosilane complex [{( o- iPr 2PC 6H 4) 2SiH}PtCl] ( 8), which upon Ir(I)-catalyzed hydrolytic oxidation gives the structurally characterized silanol complex [{( o- iPr 2PC 6H 4) 2SiOH}PtCl] ( 3). Complex 3, comprising in its structure the nucleophilic silanol fragment and electrophilic Pt(II)-Cl moiety, exhibits dual reactivity. Its reaction with the non-nucleophilic KB(C 6F 5) 4 in fluorobenzene leads to the ionic complex [{( o- iPr 2PC 6H 4) 2SiOH}Pt] (+) [(C 6F 5) 4B] (-) ( 9), which reacts with CO to yield the structurally characterized [{( o- iPr 2PC 6H 4) 2SiOH}PtCO] (+) [(C 6F 5) 4B] (-) ( 10). Treatment of 3 with non-nucleophilic bases leads to unprecedented rearrangement and coupling, resulting in the structurally characterized, unusual binuclear complex 11. The structure of 11 comprises two different fragments: the original O-Si-Pt(II)-Cl pattern, and the newly formed silanolate Pt(II)-H pattern, which are connected via a disiloxane bridge. Complex 9 undergoes a similar hydrolytic rearrangement in the presence of iPr 2NEt to give the mononuclear silanolate Pt(II)-H complex 17. Both these rearrangement-coupling reactions probably involve the inner-sphere generation of an intermediate silanone 14, which undergoes nucleophilic attack by the starting silanol 3 to yield complex 11, or adds a water molecule to yield complex 17. X-ray diffraction studies of 3, 10, and 11 exhibit a very short Si-Pt bond length (2.27-2.28 A) in the neutral complexes 3 and 11 that elongates to 2.365 A in the carbonyl complex 10. A significantly compressed geometry of the silanolate platinum(II)-hydride fragment B of the binuclear complex 11 features a Pt(2)-O(2)-Si(2) angle of 100.4 (3) degrees and a remarkably short Pt(2)...Si(2) [2.884 (3) A] distance.

9.
Inorg Chem ; 47(9): 3815-22, 2008 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-18370380

RESUMEN

The fluxional behavior of two analogous platinum complexes has been studied in solution by NMR spectroscopy to elucidate the reaction mechanism and to determine the activation parameters. This includes variable temperature NMR spectroscopy, 2D (1)H- (1)H exchange spectroscopy, and spin saturation transfer measurements. A platinum moiety, Pt(PEt 3) 2, translocates between two carbon-carbon double bonds of two vinylpyridine moieties bridged by an arene (i.e., phenyl, anthracene) at elevated temperatures. Magnetization transfer NMR experiments in the presence of free ligands unambiguously revealed an intramolecular pathway for the "phenyl" system. An intermolecular pathway is proposed for the "anthracene" complex.

10.
Inorg Chem ; 46(14): 5798-804, 2007 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-17567004

RESUMEN

The reaction of a quaternary ammonium salt of the tin chloride-substituted polyoxometalate, [PSn(Cl)W11O39]4-, with a variety of n-nucleophiles including primary, secondary, and tertiary amines and a tertiary phosphine, yielded tin-centered Lewis acid-base adducts, [PSn(Cl)W11O39]4--n-nucleophile; with more nucleophilic secondary amines such as diisopropylamine, apparently some [PSnN[CH(CH3)2]2W11O39]4- was formed as a minor product. The compounds were identified by 1H, 119Sn, 15N, 31P, and 183W NMR, ESI-MS, and elemental analyses. The key connectivity of the Sn-Cl center with the amine was clarified by the observation of 3J Sn-H couplings (Sn from the polyoxometalate cluster and H from the amine moiety) in a 2D 119Sn-1H heteronuclear multiple-bond correlation NMR experiment. This new, rather simple synthetic method was also utilized for preparing amino acid-polyoxometalate hybrid compounds.


Asunto(s)
Compuestos Orgánicos/química , Compuestos de Tungsteno/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Compuestos Orgánicos/síntesis química , Espectrometría de Masa por Ionización de Electrospray , Compuestos de Tungsteno/síntesis química
11.
Chemistry ; 11(8): 2319-26, 2005 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-15643661

RESUMEN

The novel pi-accepting, pincer-type ligand, dipyrrolylphoshinoxylene (DPyPX), is introduced. This ligand has the strongest pi-accepting phosphines used so far in the PCP family of ligands and this results in some unusual coordination chemistry. The rhodium(I) complex, [(DPyPX)Rh(CO)(PR3)] (4, R=Ph, Et, pyrrolyl) is prepared by treating the relevant [(DPyPX)Rh(PR3)] (3) complex with CO and is remarkably resistant to loss of either ligand. X-ray crystallographic analysis of complex 4 b (R=Et) reveals an unusual cisoid coordination of the PCP phosphine ligands. These observations are supported by density functional theory (DFT) calculations.

12.
Chemistry ; 9(11): 2595-602, 2003 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-12794902

RESUMEN

Abstraction of the chloride ligand from the PCN-based chloromethylrhodium complex 2 by AgX (X=BF(4)(-), CF(3)SO(3)(-)) or a direct C-C cleavage reaction of the PCN ligand 1 with [(coe)(2)Rh(solv)(n)](+)X(-) (coe=cyclooctene) lead to the formation of the coordinatively unsaturated rhodium(III) complexes 3. Compound 3 a (X=BF(4)(-)) exhibits a unique medium effect; the metal center is stabilized by reversible coordination of the bulky counteranion or solvent as a function of temperature. Reaction of [(PCN)Rh(CH(3))(Cl)] with AgBAr(f) in diethyl ether leads to an apparent rhodium(III) 14-electron complex 4, which is stabilized by reversible, weak coordination of a solvent molecule. This complex coordinates donors as weak as diethyl ether and dichloromethane. Upon substitution of the BF(4)(-) ion in [(PCN)Rh(CH(3))]BF(4) by the noncoordinating BAr(f)(-) ion in a noncoordinating medium, the resulting highly unsaturated intermediate undergoes a 1,2-metal-to-carbon methyl shift, followed by beta-hydrogen elimination, leading to the Rh-stabilized methylene arenium complex 5. This process represents a unique mild, dearomatization of the aromatic system induced by unsaturation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...