Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cheminform ; 15(1): 52, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173725

RESUMEN

Metabolomics experiments generate highly complex datasets, which are time and work-intensive, sometimes even error-prone if inspected manually. Therefore, new methods for automated, fast, reproducible, and accurate data processing and dereplication are required. Here, we present UmetaFlow, a computational workflow for untargeted metabolomics that combines algorithms for data pre-processing, spectral matching, molecular formula and structural predictions, and an integration to the GNPS workflows Feature-Based Molecular Networking and Ion Identity Molecular Networking for downstream analysis. UmetaFlow is implemented as a Snakemake workflow, making it easy to use, scalable, and reproducible. For more interactive computing, visualization, as well as development, the workflow is also implemented in Jupyter notebooks using the Python programming language and a set of Python bindings to the OpenMS algorithms (pyOpenMS). Finally, UmetaFlow is also offered as a web-based Graphical User Interface for parameter optimization and processing of smaller-sized datasets. UmetaFlow was validated with in-house LC-MS/MS datasets of actinomycetes producing known secondary metabolites, as well as commercial standards, and it detected all expected features and accurately annotated 76% of the molecular formulas and 65% of the structures. As a more generic validation, the publicly available MTBLS733 and MTBLS736 datasets were used for benchmarking, and UmetaFlow detected more than 90% of all ground truth features and performed exceptionally well in quantification and discriminating marker selection. We anticipate that UmetaFlow will provide a useful platform for the interpretation of large metabolomics datasets.

2.
Molecules ; 26(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34770989

RESUMEN

Streptomyces are well-known producers of a range of different secondary metabolites, including antibiotics and other bioactive compounds. Recently, it has been demonstrated that "silent" biosynthetic gene clusters (BGCs) can be activated by heterologously expressing transcriptional regulators from other BGCs. Here, we have activated a silent BGC in Streptomyces sp. CA-256286 by overexpression of a set of SARP family transcriptional regulators. The structure of the produced compound was elucidated by NMR and found to be an N-acetyl cysteine adduct of the pyranonaphtoquinone polyketide 3'-O-α-d-forosaminyl-(+)-griseusin A. Employing a combination of multi-omics and metabolic engineering techniques, we identified the responsible BGC. These methods include genome mining, proteomics and transcriptomics analyses, in combination with CRISPR induced gene inactivations and expression of the BGC in a heterologous host strain. This work demonstrates an easy-to-implement workflow of how silent BGCs can be activated, followed by the identification and characterization of the produced compound, the responsible BGC, and hints of its biosynthetic pathway.


Asunto(s)
Biología Computacional , Streptomyces/química , Factores de Transcripción/metabolismo , Estructura Molecular , Naftoquinonas/análisis , Naftoquinonas/metabolismo , Streptomyces/metabolismo , Factores de Transcripción/genética , Transcripción Genética/genética
3.
Sci Rep ; 11(1): 18301, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526549

RESUMEN

Streptomyces griseofuscus DSM 40191 is a fast growing Streptomyces strain that remains largely underexplored as a heterologous host. Here, we report the genome mining of S. griseofuscus, followed by the detailed exploration of its phenotype, including the production of native secondary metabolites and ability to utilise carbon, nitrogen, sulphur and phosphorus sources. Furthermore, several routes for genetic engineering of S. griseofuscus were explored, including use of GusA-based vectors, CRISPR-Cas9 and CRISPR-cBEST-mediated knockouts. Two out of the three native plasmids were cured using CRISPR-Cas9 technology, leading to the generation of strain S. griseofuscus DEL1. DEL1 was further modified by the full deletion of a pentamycin BGC and an unknown NRPS BGC, leading to the generation of strain DEL2, lacking approx. 500 kbp of the genome, which corresponds to a 5.19% genome reduction. DEL2 can be characterized by faster growth and inability to produce three main native metabolites: lankacidin, lankamycin, pentamycin and their derivatives. To test the ability of DEL2 to heterologously produce secondary metabolites, the actinorhodin BGC was used. We were able to observe a formation of a blue halo, indicating a potential production of actinorhodin by both DEL2 and a wild type.


Asunto(s)
Expresión Génica , Ingeniería Genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Streptomyces/genética , Biología Computacional/métodos , Minería de Datos , Ingeniería Genética/métodos , Genoma Bacteriano , Genómica/métodos , Familia de Multigenes , Fenotipo , Plásmidos/genética , Proteínas Recombinantes/aislamiento & purificación , Metabolismo Secundario , Streptomyces/metabolismo
4.
ACS Chem Biol ; 16(8): 1456-1468, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34279911

RESUMEN

Actinobacteria have been a rich source of novel, structurally complex natural products for many decades. Although the largest genus is Streptomyces, from which the majority of antibiotics in current and past clinical use were originally isolated, other less common genera also have the potential to produce a wealth of novel secondary metabolites. One example is the Kutzneria genus, which currently contains only five reported species. One of these species is Kutzneria albida DSM 43870T, which has 46 predicted biosynthetic gene clusters and is known to produce the macrolide antibiotic aculeximycin. Here, we report the isolation and structural characterization of two novel 30-membered glycosylated macrolides, epemicins A and B, that are structurally related to aculeximycin, from a rare Kutzneria sp. The absolute configuration for all chiral centers in the two compounds is proposed based on extensive 1D and 2D NMR studies and bioinformatics analysis of the gene cluster. Through heterologous expression and genetic inactivation, we have confirmed the link between the biosynthetic gene cluster and the new molecules. These findings show the potential of rare Actinobacteria to produce new, structurally diverse metabolites. Furthermore, the gene inactivation represents the first published report to genetically manipulate a representative of the Kutzneria genus.


Asunto(s)
Actinobacteria/química , Antibacterianos/farmacología , Macrólidos/farmacología , Actinobacteria/genética , Actinobacteria/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Descubrimiento de Drogas , Macrólidos/química , Macrólidos/aislamiento & purificación , Macrólidos/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Dominios Proteicos , Estereoisomerismo
5.
Microbiol Resour Announc ; 10(30): e0049921, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34323613

RESUMEN

Here, we report the sequencing, assembly, and annotation of the genome of the rare actinobacterium Kutzneria sp. strain CA-103260. The genome of CA-103260 was sequenced using PacBio and Illumina technologies and it consists of a circular 11,609,901-bp chromosome.

6.
Synth Syst Biotechnol ; 5(1): 11-18, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32021916

RESUMEN

To accelerate the shift to bio-based production and overcome complicated functional implementation of natural and artificial biosynthetic pathways to industry relevant organisms, development of new, versatile, bio-based production platforms is required. Here we present a novel yeast-based platform for biosynthesis of bacterial aromatic polyketides. The platform is based on a synthetic polyketide synthase system enabling a first demonstration of bacterial aromatic polyketide biosynthesis in a eukaryotic host.

7.
Biochem Biophys Rep ; 4: 342-350, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29124223

RESUMEN

Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56 U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6 µg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79-84%) transfected muscle fibers with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...