Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37639410

RESUMEN

In this article, we propose RRT-Q X∞ , an online and intermittent kinodynamic motion planning framework for dynamic environments with unknown robot dynamics and unknown disturbances. We leverage RRT X for global path planning and rapid replanning to produce waypoints as a sequence of boundary-value problems (BVPs). For each BVP, we formulate a finite-horizon, continuous-time zero-sum game, where the control input is the minimizer, and the worst case disturbance is the maximizer. We propose a robust intermittent Q-learning controller for waypoint navigation with completely unknown system dynamics, external disturbances, and intermittent control updates. We execute a relaxed persistence of excitation technique to guarantee that the Q-learning controller converges to the optimal controller. We provide rigorous Lyapunov-based proofs to guarantee the closed-loop stability of the equilibrium point. The effectiveness of the proposed RRT-Q X∞ is illustrated with Monte Carlo numerical experiments in numerous dynamic and changing environments.

2.
IEEE Int Conf Rehabil Robot ; 2019: 682-688, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374710

RESUMEN

This paper presents a compliant, underactuated finger for the development of anthropomorphic robotic and prosthetic hands. The finger achieves both flexion/extension and adduction/abduction on the metacarpophalangeal joint, by using two actuators. The design employs moment arm pulleys to drive the tendon laterally and amplify the abduction motion, while also maintaining the flexion motion. Particular emphasis has been given to the analysis of the mechanism. The proposed finger has been fabricated with the hybrid deposition manufacturing technique and the actuation mechanism's efficiency has been validated with experiments that include the computation of the reachable workspace, the assessment of the exerted forces at the fingertip, the demonstration of the feasible motions, and the presentation of the grasping and manipulation capabilities. The proposed mechanism facilitates the collaboration of the two actuators to increase the exerted finger forces. Moreover, the extended workspace allows the execution of dexterous manipulation tasks.


Asunto(s)
Dedos/fisiología , Fenómenos Biomecánicos , Adaptabilidad , Humanos , Articulaciones/fisiología , Rotación , Tendones/fisiología
3.
IEEE Trans Neural Netw Learn Syst ; 30(12): 3803-3817, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30946679

RESUMEN

This paper presents an online kinodynamic motion planning algorithmic framework using asymptotically optimal rapidly-exploring random tree (RRT*) and continuous-time Q-learning, which we term as RRT-Q⋆. We formulate a model-free Q-based advantage function and we utilize integral reinforcement learning to develop tuning laws for the online approximation of the optimal cost and the optimal policy of continuous-time linear systems. Moreover, we provide rigorous Lyapunov-based proofs for the stability of the equilibrium point, which results in asymptotic convergence properties. A terminal state evaluation procedure is introduced to facilitate the online implementation. We propose a static obstacle augmentation and a local replanning framework, which are based on topological connectedness, to locally recompute the robot's path and ensure collision-free navigation. We perform simulations and a qualitative comparison to evaluate the efficacy of the proposed methodology.

4.
Front Robot AI ; 6: 47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33501063

RESUMEN

This paper presents an adaptive actuation mechanism that can be employed for the development of anthropomorphic, dexterous robot hands. The tendon-driven actuation mechanism achieves both flexion/extension and adduction/abduction on the finger's metacarpophalangeal joint using two actuators. Moment arm pulleys are employed to drive the tendon laterally and achieve a simultaneous execution of abduction and flexion motion. Particular emphasis has been given to the modeling and analysis of the actuation mechanism. More specifically, the analysis determines specific values for the design parameters for desired abduction angles. Also, a model for spatial motion is provided that relates the actuation modes with the finger motions. A static balance analysis is performed for the computation of the tendon force at each joint. A model is employed for the computation of the stiffness of the rotational flexure joints. The proposed mechanism has been designed and fabricated with the hybrid deposition manufacturing technique. The efficiency of the mechanism has been validated with experiments that include the assessment of the role of friction, the computation of the reachable workspace, the assessment of the force exertion capabilities, the demonstration of the feasible motions, and the evaluation of the grasping and manipulation capabilities. An anthropomorphic robot hand equipped with the proposed actuation mechanism was also fabricated to evaluate its performance. The proposed mechanism facilitates the collaboration of actuators to increase the exerted forces, improving hand dexterity and allowing the execution of dexterous manipulation tasks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...