Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 26(19): 24973-24984, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30469605

RESUMEN

The display quality of touchscreen devices with on-screen fingerprint sensors is reduced by moiré patterns, interference phenomena caused by an overlap between the pixel pattern of the display, and the electrode pattern of the fingerprint sensor. A promising strategy for resolving this issue is to reduce the visibility of the moiré pattern, by including a filling layer with a transmittance similar to that of the electrodes, between the different patterns. We propose a moiré-free fingerprint sensor that uses an oxide-metal-oxide (IZO/Ag/IZO) multilayer as a highly transparent electrode. To verify the moiré reduction effect, we conducted a two-dimensional spectral analysis to calculate the spatial frequencies of the superimposed image of the display and the sensor patterns, and demonstrated experimentally that the proposed electrode greatly reduces the undesirable moiré phenomenon.

2.
Mar Drugs ; 15(12)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29194380

RESUMEN

Ice-binding protein (IBPs) protect cells from cryo-injury during cryopreservation by inhibiting ice recrystallization (IR), which is a main cause of cell death. In the present study, we employed two IBPs, one, designated LeIBP from Arctic yeast, and the other, designated FfIBP from Antarctic sea ice bacterium, in the cryopreservation of three economically valuable marine microalgae, Isochrysis galbana, Pavlova viridis, and Chlamydomonas coccoides. Both of the IBPs showed IR inhibition in f/2 medium containing 10% DMSO, indicating that they retain their function in freezing media. Microalgal cells were frozen in 10% DMSO with or without IBP. Post-thaw viability exhibited that the supplementation of IBPs increased the viability of all cryopreserved cells. LeIBP was effective in P. viridis and C. coccoides, while FfIBP was in I. galbana. The cryopreservative effect was more drastic with P. viridis when 0.05 mg/mL LeIBP was used. These results clearly demonstrate that IBPs could improve the viability of cryopreserved microalgal cells.


Asunto(s)
Proteínas Anticongelantes/química , Proteínas Portadoras/química , Microalgas/efectos de los fármacos , Animales , Proteínas Anticongelantes/farmacología , Organismos Acuáticos , Proteínas Portadoras/farmacología , Supervivencia Celular , Criopreservación
3.
Mar Drugs ; 15(2)2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-28134801

RESUMEN

Antifreeze proteins (AFPs) are biological antifreezes with unique properties, including thermal hysteresis(TH),ice recrystallization inhibition(IRI),and interaction with membranes and/or membrane proteins. These properties have been utilized in the preservation of biological samples at low temperatures. Here, we review the structure and function of marine-derived AFPs, including moderately active fish AFPs and hyperactive polar AFPs. We also survey previous and current reports of cryopreservation using AFPs. Cryopreserved biological samples are relatively diverse ranging from diatoms and reproductive cells to embryos and organs. Cryopreserved biological samples mainly originate from mammals. Most cryopreservation trials using marine-derived AFPs have demonstrated that addition of AFPs can improve post-thaw viability regardless of freezing method (slow-freezing or vitrification), storage temperature, and types of biological sample type.


Asunto(s)
Proteínas Anticongelantes/metabolismo , Organismos Acuáticos/metabolismo , Crioprotectores/metabolismo , Animales , Criopreservación/métodos , Cristalización/métodos , Congelación , Hielo , Temperatura
4.
J Am Chem Soc ; 131(17): 6124-32, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19354240

RESUMEN

The ability to control the molecular organization of electronically active liquid-crystalline polymer semiconductors on surfaces provides opportunities to develop easy-to-process yet highly ordered supramolecular systems and, in particular, to optimize their electrical and environmental reliability in applications in the field of large-area printed electronics and photovoltaics. Understanding the relationship between liquid-crystalline nanostructure and electrical stability on appropriate molecular surfaces is the key to enhancing the performance of organic field-effect transistors (OFETs) to a degree comparable to that of amorphous silicon (a-Si). Here, we report a novel donor-acceptor type liquid-crystalline semiconducting copolymer, poly(didodecylquaterthiophene-alt-didodecylbithiazole), which contains both electron-donating quaterthiophene and electron-accepting 5,5'-bithiazole units. This copolymer exhibits excellent electrical characteristics such as field-effect mobilities as high as 0.33 cm(2)/V.s and good bias-stress stability comparable to that of amorphous silicon (a-Si). Liquid-crystalline thin films with structural anisotropy form spontaneously through self-organization of individual polymer chains as a result of intermolecular interactions in the liquid-crystalline mesophase. These thin films adopt preferential well-ordered intermolecular pi-pi stacking parallel to the substrate surface. This bottom-up assembly of the liquid-crystalline semiconducting copolymer enables facile fabrication of highly ordered channel layers with remarkable electrical stability.


Asunto(s)
Polímeros/química , Semiconductores , Sustancias Macromoleculares/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...