Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Technol Health Care ; 31(S1): 247-258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37066926

RESUMEN

BACKGROUND: Squats are one of the most widely used weight training methods worldwide, and the single most ubiquitous with regard to multi-joint resistance training. OBJECTIVE: The objective of the present study was to investigate kinematic and kinetic changes in the lower extremities as a result of load increases during a back squat exercise, and to propose an association between back squats and lower extremity injuries. METHODS: Eight individuals with experience of back squat training were recruited. The subjects performed back squats with loads of 25%, 50%, 100%, and 125% of their body weight. During the performance, the center of pressure (COP) sway; vertical center of mass (COM) velocity; joint moment; joint range of motion (ROM) of flexion/extension and adduction/abduction; and rotation of the ankle, knee, and hip joints were measured. RESULTS: The participants' lower extremity joint ROM, vertical COM velocity, and COP variability did not change significantly with changes in weight loading. However, the moments applied to the lower extremity joints differed according to changes in barbell weight. The moments of plantar flexion (f= 54.362, p< 0.001), dorsiflexion (f= 8.475, p< 0.001), knee flexion (f= 12.013, p< 0.001), knee extension (f= 8.581, p< 0.001), hip flexion (f= 5.111, p< 0.001), and hip extension (f= 11.053, p< 0.001) increased in the sagittal plane (flexion/extension). There was also a significant increase in ankle eversion (f= 5.612, p= 0.004), hip abduction (f= 3.242, p= 0.037), and adduction (f= 5.846, p= 0.003) in the frontal plane (adduction/abduction). Among the moment variables in the transverse plane (rotation), there were significant differences in ankle internal rotation (f= 7.043, p= 0.001) and hip external rotation (f= 11.070, p< 0.001). CONCLUSION: As the barbell load increased, posture and performance were maintained, but rotational moments of the joints differed. It is expected that the joint directions that showed significant differences in this study are likely to be vulnerable to the risk of injury when an excessive load is applied to the body. Examples include the hip adduction moment, hip external rotation moment, and ankle internal rotation moment, and apply regardless of the increase in the rotational moments of joints from load increases.


Asunto(s)
Extremidad Inferior , Entrenamiento de Fuerza , Humanos , Fenómenos Biomecánicos , Articulación de la Rodilla , Articulación de la Cadera , Postura , Rango del Movimiento Articular
2.
Front Bioeng Biotechnol ; 11: 1033590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824350

RESUMEN

The purpose of the study was to investigate the effect of an increase in sprinting velocity on the anterior cruciate ligament (ACL) load, knee joint load, and activation of femoral muscles using the musculoskeletal modeling approach. Fourteen high school male athletes were recruited (age: 17.4 ± 0.7 years, height: 1.75 ± 0.04 m, weight: 73.3 ± 8.94 kg), with the right foot dominant and physical activity level of about 3-4 h per day. The kinematics, kinetics, and co-contraction index (CCI) of the extensors and flexors of the right leg's femoral muscles were calculated. The anterior cruciate ligament load was estimated using the musculoskeletal modeling method. In the results, it was observed that the anterior cruciate ligament load (p < 0.017) increased as sidestep cutting velocity increased, resulting in increased adduction (p < 0.017) and the internal rotation moment of the knee joint. This was significantly higher than when sprinting at a similar velocity. The co-contraction index result, which represents the balanced activation of the femoral extensor and flexor muscles, showed a tendency of decrement with increasing sprinting velocity during sidestep cutting (p < 0.017), whereas no significant differences were observed when running at different sprinting conditions. Therefore, we postulate that factors such as knee joint shear force, extended landing posture with increasing sprinting velocity, internal rotation moment, and femoral muscle activity imbalance influence the increase of anterior cruciate ligament load during a sidestep cutting maneuver.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35955013

RESUMEN

We investigated the effect of prolonged running on joint kinematics and its association with stride complexity between novice and elite runners. Ten elite marathoners and eleven healthy individuals took part in a 20 min submaximal prolonged running experiment at their preferred running speed (PRS). A three-dimensional motion capture system was utilized to capture and calculate the alpha exponent, stride-to-stride fluctuations (SSFs), and stride-to-stride variability (SSV) of spatiotemporal parameters and joint kinematics. In the results, the elite athletes ran at a considerably higher PRS than the novice runners, yet no significant differences were found in respiratory exchange ratio with increasing time intervals. For the spatiotemporal parameters, we observed a significant increase in the step width and length variability in novice runners with increasing time-interval (p < 0.05). However, we did not observe any differences in the alpha exponent of spatiotemporal parameters. Significant differences in SSF of joint kinematics were observed, particularly in the sagittal plane for ankle, knee, and hip at heel strike (p < 0.05). While in mid-stance, time-interval differences were observed in novices who ran with a lower knee flexion angle (p < 0.05). During toe-off, significantly higher SSV was observed, particularly in the hip and ankle for novices (p < 0.05). The correlation analysis of joint SSV revealed a distinct negative relationship with the alpha exponent of step-length and step-width for elite runners, while, for novices, a positive relation was observed only for the alpha exponent of step-width. In conclusion, our study shows that increased step-width variability seen in novices could be a compensatory mechanism to maintain performance and mitigate the loss of stability. On the other hand, elite runners showed a training-induced effective modulation of lower-limb kinematics to improve their running performance.


Asunto(s)
Carrera , Articulación del Tobillo , Fenómenos Biomecánicos , Humanos , Articulación de la Rodilla , Extremidad Inferior
4.
Technol Health Care ; 30(S1): 383-390, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35124613

RESUMEN

BACKGROUND: Children with Down syndrome (DS) have critical biomechanical impairments such as increased ligamentous laxity, muscle hypotonia, and dysfunctional motor coordination, which makes performing everyday tasks challenging. OBJECTIVE: The purpose of the study was to explore the differences in the vertical joint stiffness, plantar force, and range of motion during drop landing for DS and age-matched typically developing children. METHODS: Six young male children with DS and age-matched seven healthy typically developing children (TD) assessed joint strength using an isokinetic dynamometer and performed five trials of single-leg drop jump using force platform and motion capture system. RESULTS: The peak vertical ground reaction force (VGRF), Range of motion (ROM), joint stiffness, and joint strength of lower limb were calculated and compared across DS and TD groups. The results revealed a significantly larger peak VGRF [z=-2.857, p< 0.001] values for the DS group compared to the TD groups. The results of Spearman's correlation analysis showed a negative correlation between hip joint stiffness and knee joint ROM [r=-0.886, p< 0.05] and ankle joint stiffness and knee joint ROM [r=-0.829, p< 0.05] for DS. CONCLUSIONS: The abnormal movements observed among DS was not due to the difference in stiffness of the lower extremity but due to the utilization of different landing mechanisms with changes in ROM.


Asunto(s)
Síndrome de Down , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos/fisiología , Niño , Humanos , Articulación de la Rodilla/fisiología , Masculino , Rango del Movimiento Articular
5.
J Phys Ther Sci ; 27(8): 2629-32, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26357449

RESUMEN

[Purpose] This study aimed to verify the effectiveness of an augmented reality-based ski simulator through analyzing the changes in movement patterns as well as the engagement of major muscles of the lower body. [Subjects] Seven subjects participated in the study. All were national team-level athletes studying at "K" Sports University in Korea who exhibited comparable performance levels and had no record of injuries in the preceding 6 months (Age 23.4 ± 3.8 years; Height 172.6 ± 12.1 cm; Weight 72.3 ± 16.2 kg; Experience 12.3 ± 4.8 years). [Methods] A reality-based ski simulator developed by a Korean manufacturer was used for the study. Three digital video cameras and a wireless electromyography system were used to perform 3-dimensional motion analysis and measure muscle activation level. [Results] Left hip angulation was found to increase as the frequency of the turns increased. Electromyography data revealed that the activation level of the quadriceps group's extension muscles and the biceps femoris group's flexing muscles had a crossing pattern. [Conclusion] Sustained training using an augmented reality-based ski simulator resulted in movements that extended the lower body joints, which is thought to contribute to increasing muscle fatigue.

6.
J Phys Ther Sci ; 26(4): 525-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24764626

RESUMEN

[Purpose] The aim of this study was to present an individualized resistance training method to enable exercise while maintaining an exercise load that is set according to an individual's joint angle-torque using a haptic-based resistance training machine. [Methods] Five participants (machine group) performed individualized shoulder internal and external rotation training with a haptic resistance training machine, while another five participants performed general dumbbell-based shoulder internal and external rotation training for eight weeks. Internal and external rotation powers of subjects were measured using an isokinetic machine before and after training. [Results] The average powers of both shoulder internal and external rotation has been improved after training (25.72%, 13.62%). The improvement in power of external rotation in the machine group was significantly higher than that in the control group. [Conclusion] This study proposes a haptic-based individualized rotator cuff muscle training method. The training protocol maintaining the joint angle-torque profile showed better improvement of shoulder internal/external rotation than dumbbell training.

7.
J Phys Ther Sci ; 25(10): 1299-301, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24259780

RESUMEN

The purpose of this study was to investigate the differences in muscle activation patterns of the biceps brachii (BB) and flexor carpi radialis (FCR) muscles, while measuring the resultant force (RF) at different shoulder flexion angles. [Subjects] Thirteen healthy males (age 24.85±3.4 years, weight; 77.8±7.9 kg; height, 1.7±0.05 m) were enrolled in this study. [Methods] The resultant force was measured by a force transducer . The elbow angle remained constant and the flexion shoulder angle was changed (30°, 45°, 60°, 75° and 90°). [Results] The results of the surface EMG show the largest muscle activities occurred at a shoulder flexion of 75° for BB and 90° for FCR. The largest resultant force was measured at a shoulder flexion angle of 75°. We conclude, that when performing the biceps curl exercise using an arm curl machine, the shoulder should be flexed at 75° to maximize the focus of the exercise for the BB. [Conclusion] These results are useful from the perspective of design as they highlight the differences in the muscle activation of BB and FCR with postural change. Ultimately this knowledge can be used in the design of rehabilitation training for the shoulder as they show that posture can affect muscle activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...