Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stud Health Technol Inform ; 310: 1462-1463, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38269697

RESUMEN

Cardiac arrest prediction for multivariate time series data have been developed and obtained high precision performance. However, these algorithms still did not achieved high sensitivity and suffer from a high false-alarm. Therefore, we propose a ensemble approach for prediction satisfying precision-recall result compared than other machine learning methods. As a result, our proposed method obtained an overall area under precision-recall curve of 46.7%. It is possible to more accurately respond rapidly cardiac arrest event.


Asunto(s)
Algoritmos , Paro Cardíaco , Humanos , Paro Cardíaco/diagnóstico , Aprendizaje Automático , Factores de Tiempo , Hospitales
2.
J Med Internet Res ; 25: e48244, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133922

RESUMEN

BACKGROUND: Cardiac arrest (CA) is the leading cause of death in critically ill patients. Clinical research has shown that early identification of CA reduces mortality. Algorithms capable of predicting CA with high sensitivity have been developed using multivariate time series data. However, these algorithms suffer from a high rate of false alarms, and their results are not clinically interpretable. OBJECTIVE: We propose an ensemble approach using multiresolution statistical features and cosine similarity-based features for the timely prediction of CA. Furthermore, this approach provides clinically interpretable results that can be adopted by clinicians. METHODS: Patients were retrospectively analyzed using data from the Medical Information Mart for Intensive Care-IV database and the eICU Collaborative Research Database. Based on the multivariate vital signs of a 24-hour time window for adults diagnosed with heart failure, we extracted multiresolution statistical and cosine similarity-based features. These features were used to construct and develop gradient boosting decision trees. Therefore, we adopted cost-sensitive learning as a solution. Then, 10-fold cross-validation was performed to check the consistency of the model performance, and the Shapley additive explanation algorithm was used to capture the overall interpretability of the proposed model. Next, external validation using the eICU Collaborative Research Database was performed to check the generalization ability. RESULTS: The proposed method yielded an overall area under the receiver operating characteristic curve (AUROC) of 0.86 and area under the precision-recall curve (AUPRC) of 0.58. In terms of the timely prediction of CA, the proposed model achieved an AUROC above 0.80 for predicting CA events up to 6 hours in advance. The proposed method simultaneously improved precision and sensitivity to increase the AUPRC, which reduced the number of false alarms while maintaining high sensitivity. This result indicates that the predictive performance of the proposed model is superior to the performances of the models reported in previous studies. Next, we demonstrated the effect of feature importance on the clinical interpretability of the proposed method and inferred the effect between the non-CA and CA groups. Finally, external validation was performed using the eICU Collaborative Research Database, and an AUROC of 0.74 and AUPRC of 0.44 were obtained in a general intensive care unit population. CONCLUSIONS: The proposed framework can provide clinicians with more accurate CA prediction results and reduce false alarm rates through internal and external validation. In addition, clinically interpretable prediction results can facilitate clinician understanding. Furthermore, the similarity of vital sign changes can provide insights into temporal pattern changes in CA prediction in patients with heart failure-related diagnoses. Therefore, our system is sufficiently feasible for routine clinical use. In addition, regarding the proposed CA prediction system, a clinically mature application has been developed and verified in the future digital health field.


Asunto(s)
Paro Cardíaco , Insuficiencia Cardíaca , Adulto , Humanos , Inteligencia Artificial , Estudios Retrospectivos , Paro Cardíaco/diagnóstico , Paro Cardíaco/terapia , Insuficiencia Cardíaca/diagnóstico , Hospitales
3.
J Pers Med ; 11(6)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199932

RESUMEN

Accurate nuclear segmentation in histopathology images plays a key role in digital pathology. It is considered a prerequisite for the determination of cell phenotype, nuclear morphometrics, cell classification, and the grading and prognosis of cancer. However, it is a very challenging task because of the different types of nuclei, large intraclass variations, and diverse cell morphologies. Consequently, the manual inspection of such images under high-resolution microscopes is tedious and time-consuming. Alternatively, artificial intelligence (AI)-based automated techniques, which are fast and robust, and require less human effort, can be used. Recently, several AI-based nuclear segmentation techniques have been proposed. They have shown a significant performance improvement for this task, but there is room for further improvement. Thus, we propose an AI-based nuclear segmentation technique in which we adopt a new nuclear segmentation network empowered by residual skip connections to address this issue. Experiments were performed on two publicly available datasets: (1) The Cancer Genome Atlas (TCGA), and (2) Triple-Negative Breast Cancer (TNBC). The results show that our proposed technique achieves an aggregated Jaccard index (AJI) of 0.6794, Dice coefficient of 0.8084, and F1-measure of 0.8547 on TCGA dataset, and an AJI of 0.7332, Dice coefficient of 0.8441, precision of 0.8352, recall of 0.8306, and F1-measure of 0.8329 on the TNBC dataset. These values are higher than those of the state-of-the-art methods.

4.
Sensors (Basel) ; 20(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937774

RESUMEN

The long-distance recognition methods in indoor environments are commonly divided into two categories, namely face recognition and face and body recognition. Cameras are typically installed on ceilings for face recognition. Hence, it is difficult to obtain a front image of an individual. Therefore, in many studies, the face and body information of an individual are combined. However, the distance between the camera and an individual is closer in indoor environments than that in outdoor environments. Therefore, face information is distorted due to motion blur. Several studies have examined deblurring of face images. However, there is a paucity of studies on deblurring of body images. To tackle the blur problem, a recognition method is proposed wherein the blur of body and face images is restored using a generative adversarial network (GAN), and the features of face and body obtained using a deep convolutional neural network (CNN) are used to fuse the matching score. The database developed by us, Dongguk face and body dataset version 2 (DFB-DB2) and ChokePoint dataset, which is an open dataset, were used in this study. The equal error rate (EER) of human recognition in DFB-DB2 and ChokePoint dataset was 7.694% and 5.069%, respectively. The proposed method exhibited better results than the state-of-art methods.


Asunto(s)
Reconocimiento Facial Automatizado , Identificación Biométrica/instrumentación , Cara , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Bases de Datos Factuales , Humanos , Movimiento (Física)
5.
Sensors (Basel) ; 18(9)2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30205500

RESUMEN

Conventional nighttime face detection studies mostly use near-infrared (NIR) light cameras or thermal cameras, which are robust to environmental illumination variation and low illumination. However, for the NIR camera, it is difficult to adjust the intensity and angle of the additional NIR illuminator according to its distance from an object. As for the thermal camera, it is expensive to use as a surveillance camera. For these reasons, we propose a nighttime face detection method based on deep learning using a single visible-light camera. In a long-distance night image, it is difficult to detect faces directly from the entire image due to noise and image blur. Therefore, we propose Two-Step Faster region-based convolutional neural network (R-CNN) based on the image preprocessed by histogram equalization (HE). As a two-step scheme, our method sequentially performs the detectors of body and face areas, and locates the face inside a limited body area. By using our two-step method, the processing time by Faster R-CNN can be reduced while maintaining the accuracy of face detection by Faster R-CNN. Using a self-constructed database called Dongguk Nighttime Face Detection database (DNFD-DB1) and an open database of Fudan University, we proved that the proposed method performs better compared to other existing face detectors. In addition, the proposed Two-Step Faster R-CNN outperformed single Faster R-CNN and our method with HE showed higher accuracies than those without our preprocessing in nighttime face detection.

6.
Sensors (Basel) ; 18(9)2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30208648

RESUMEN

In the current field of human recognition, most of the research being performed currently is focused on re-identification of different body images taken by several cameras in an outdoor environment. On the other hand, there is almost no research being performed on indoor human recognition. Previous research on indoor recognition has mainly focused on face recognition because the camera is usually closer to a person in an indoor environment than an outdoor environment. However, due to the nature of indoor surveillance cameras, which are installed near the ceiling and capture images from above in a downward direction, people do not look directly at the cameras in most cases. Thus, it is often difficult to capture front face images, and when this is the case, facial recognition accuracy is greatly reduced. To overcome this problem, we can consider using the face and body for human recognition. However, when images are captured by indoor cameras rather than outdoor cameras, in many cases only part of the target body is included in the camera viewing angle and only part of the body is captured, which reduces the accuracy of human recognition. To address all of these problems, this paper proposes a multimodal human recognition method that uses both the face and body and is based on a deep convolutional neural network (CNN). Specifically, to solve the problem of not capturing part of the body, the results of recognizing the face and body through separate CNNs of VGG Face-16 and ResNet-50 are combined based on the score-level fusion by Weighted Sum rule to improve recognition performance. The results of experiments conducted using the custom-made Dongguk face and body database (DFB-DB1) and the open ChokePoint database demonstrate that the method proposed in this study achieves high recognition accuracy (the equal error rates of 1.52% and 0.58%, respectively) in comparison to face or body single modality-based recognition and other methods used in previous studies.


Asunto(s)
Identificación Biométrica/métodos , Redes Neurales de la Computación , Constitución Corporal , Bases de Datos Factuales , Cara/anatomía & histología , Femenino , Humanos , Masculino
7.
Sensors (Basel) ; 18(6)2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29795038

RESUMEN

Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker's location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.

8.
Sensors (Basel) ; 17(3)2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28335510

RESUMEN

Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...