Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 16(1)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37844581

RESUMEN

Generating functional and perfusable micro-vascular networks is an important goal for the fabrication of large and three-dimensional tissues. Up to now, the fabrication of micro-vascular networks is a complicated multitask involving several different factors such as time consuming, cells survival, micro-diameter vasculature and strict alignment. Here, we propose a technique combining multi-material extrusion and ultrasound standing wave forces to create a network structure of human umbilical vein endothelial cells within a mixture of calcium alginate and decellularized extracellular matrix. The functionality of the matured microvasculature networks was demonstrated through the enhancement of cell-cell adhesion, angiogenesis process, and perfusion tests with microparticles, FITC-dextran, and whole mouse blood. Moreover, animal experiments exhibited the implantability including that the pre-existing blood vessels of the host sprout towards the preformed vessels of the scaffold over time and the microvessels inside the implanted scaffold matured from empty tubular structures to functional blood-carrying microvessels in two weeks.


Asunto(s)
Microvasos , Ingeniería de Tejidos , Humanos , Animales , Ratones , Células Endoteliales de la Vena Umbilical Humana , Ingeniería de Tejidos/métodos , Adhesión Celular , Morfogénesis
2.
Biofabrication ; 15(4)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37659401

RESUMEN

One of the most promising techniques for treating severe peripheral artery disease is the use of cellular tissue-engineered vascular grafts (TEVGs). This study proposes an inverse-gravity (IG) extrusion technique for creating long double-layered cellular TEVGs with diameters over 3 mm. A three-layered coaxial laminar hydrogel flow in an 8 mm-diameter pipe was realised simply by changing the extrusion direction of the hydrogel from being aligned with the direction of gravity to against it. This technique produced an extruded mixture of human aortic smooth muscle cells (HASMCs) and type-I collagen as a tubular structure with an inner diameter of 3.5 mm. After a 21 day maturation period, the maximal burst pressure, longitudinal breaking force, and circumferential breaking force of the HASMC TEVG were 416 mmHg, 0.69 N, and 0.89 N, respectively. The HASMC TEVG was endothelialised with human umbilical vein endothelial cells to form a tunica intima that simulated human vessels. Besides subcutaneous implantability on mice, the double-layered blood vessels showed a considerably lower adherence of platelets and red blood cells once exposed to heparinised mouse blood and were considered nonhaemolytic. The proposed IG extrusion technique can be applied in various fields requiring multilayered materials with large diameters.


Asunto(s)
Aorta , Plaquetas , Humanos , Animales , Ratones , Prótesis Vascular , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles
3.
Front Neurosci ; 17: 1137096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292158

RESUMEN

Currently, neurointervention, surgery, medication, and central nervous system (CNS) stimulation are the main treatments used in CNS diseases. These approaches are used to overcome the blood brain barrier (BBB), but they have limitations that necessitate the development of targeted delivery methods. Thus, recent research has focused on spatiotemporally direct and indirect targeted delivery methods because they decrease the effect on nontarget cells, thus minimizing side effects and increasing the patient's quality of life. Methods that enable therapeutics to be directly passed through the BBB to facilitate delivery to target cells include the use of nanomedicine (nanoparticles and extracellular vesicles), and magnetic field-mediated delivery. Nanoparticles are divided into organic, inorganic types depending on their outer shell composition. Extracellular vesicles consist of apoptotic bodies, microvesicles, and exosomes. Magnetic field-mediated delivery methods include magnetic field-mediated passive/actively-assisted navigation, magnetotactic bacteria, magnetic resonance navigation, and magnetic nanobots-in developmental chronological order of when they were developed. Indirect methods increase the BBB permeability, allowing therapeutics to reach the CNS, and include chemical delivery and mechanical delivery (focused ultrasound and LASER therapy). Chemical methods (chemical permeation enhancers) include mannitol, a prevalent BBB permeabilizer, and other chemicals-bradykinin and 1-O-pentylglycerol-to resolve the limitations of mannitol. Focused ultrasound is in either high intensity or low intensity. LASER therapies includes three types: laser interstitial therapy, photodynamic therapy, and photobiomodulation therapy. The combination of direct and indirect methods is not as common as their individual use but represents an area for further research in the field. This review aims to analyze the advantages and disadvantages of these methods, describe the combined use of direct and indirect deliveries, and provide the future prospects of each targeted delivery method. We conclude that the most promising method is the nose-to-CNS delivery of hybrid nanomedicine, multiple combination of organic, inorganic nanoparticles and exosomes, via magnetic resonance navigation following preconditioning treatment with photobiomodulation therapy or focused ultrasound in low intensity as a strategy for differentiating this review from others on targeted CNS delivery; however, additional studies are needed to demonstrate the application of this approach in more complex in vivo pathways.

4.
Int J Bioprint ; 8(3): 557, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105137

RESUMEN

Rapid construction of pre-vascular structure is highly desired for engineered thick tissue. However, angiogenesis in free-standing scaffold has been rarely reported because of limitation in growth factor (GF) supply into the scaffold. This study, for the 1st time, investigated angiogenic sprouting in free-standing two-vasculature-embedded scaffold with three different culture conditions and additional GFs. A two-core laminar flow device continuously extruded one vascular channel with human umbilical vein endothelial cells (HUVECs) and a 3 mg/ml type-1 collagen, one hollow channel, and a shell layer with 2% w/v gelatin-alginate (70:30) composite. Under the GF flowing condition, angiogenic sprouting from the HUVEC vessel had started since day 1 and gradually grew toward the hollow channel on day 10. Due to the medium flowing, the HUVECs showed elongated spindle-like morphology homogeneously. Their viability has been over 80% up to day 10. This approach could apply to vascular investigation, and drug discovery further, not only to the engineered thick tissue.

5.
Sci Rep ; 12(1): 15371, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100619

RESUMEN

In lymphedema, proinflammatory cytokine-mediated progressive cascades always occur, leading to macroscopic fibrosis. However, no methods are practically available for measuring lymphedema-induced fibrosis before its deterioration. Technically, CT can visualize fibrosis in superficial and deep locations. For standardized measurement, verification of deep learning (DL)-based recognition was performed. A cross-sectional, observational cohort trial was conducted. After narrowing window width of the absorptive values in CT images, SegNet-based semantic segmentation model of every pixel into 5 classes (air, skin, muscle/water, fat, and fibrosis) was trained (65%), validated (15%), and tested (20%). Then, 4 indices were formulated and compared with the standardized circumference difference ratio (SCDR) and bioelectrical impedance (BEI) results. In total, 2138 CT images of 27 chronic unilateral lymphedema patients were analyzed. Regarding fibrosis segmentation, the mean boundary F1 score and accuracy were 0.868 and 0.776, respectively. Among 19 subindices of the 4 indices, 73.7% were correlated with the BEI (partial correlation coefficient: 0.420-0.875), and 13.2% were correlated with the SCDR (0.406-0.460). The mean subindex of Index 2 [Formula: see text] presented the highest correlation. DL has potential applications in CT image-based lymphedema-induced fibrosis recognition. The subtraction-type formula might be the most promising estimation method.


Asunto(s)
Aprendizaje Profundo , Linfedema , Estudios Transversales , Fibrosis , Humanos , Linfedema/diagnóstico por imagen , Linfedema/etiología , Tomografía Computarizada por Rayos X/métodos
6.
Micromachines (Basel) ; 12(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34357257

RESUMEN

The natural compound eye system has many outstanding properties, such as a more compact size, wider-angle view, better capacity to detect moving objects, and higher sensitivity to light intensity, compared to that of a single-aperture vision system. Thanks to the development of micro- and nano-fabrication techniques, many artificial compound eye imaging systems have been studied and fabricated to inherit fascinating optical features of the natural compound eye. This paper provides a review of artificial compound eye imaging systems. This review begins by introducing the principle of the natural compound eye, and then, the analysis of two types of artificial compound eye systems. We equally present the applications of the artificial compound eye imaging systems. Finally, we suggest our outlooks about the artificial compound eye imaging system.

7.
PLoS One ; 15(12): e0241117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33326434

RESUMEN

Deafferentation and weight offloading can increase brain and spinal motor neuron excitability, respectively. End-effector gait robots (EEGRs) can blend these effects with stereotyped movement-induced neuroplasticity. The authors aimed to evaluate the usefulness of EEGRs as a postoperative neuro-muscular rehabilitation tool. This prospective randomized controlled trial included patients who had undergone unilateral total knee arthroplasty (TKA). Patients were randomly allocated into two groups: one using a 200-step rehabilitation program in an EEGR or the other using a walker on a floor (WF) three times a day for five weekdays. The two groups were compared by electrophysiological and biomechanical methods. Since there were no more enrollments due to funding issues, interim analysis was performed. Twelve patients were assigned to the EEGR group and eight patients were assigned to the WF group. Although the muscle volume of the quadriceps and hamstring did not differ between the two groups, the normalized peak torque of the operated knee flexors (11.28 ± 16.04 Nm/kg) was improved in the EEGR group compared to that of the operated knee flexors in the WF group (4.25 ± 14.26 Nm/kg) (p = 0.04). The normalized compound motor action potentials of the vastus medialis (VM) and biceps femoris (BF) were improved in the EEGR group (p < 0.05). However, the normalized real-time peak amplitude and total, mean area under the curve of VM were decreased during rehabilitation in the EEGR group (p < 0.05). No significant differences were found between operated and non-operated knees in the EEGR group. Five-day EEGR-assisted rehabilitation induced strengthening in the knee flexors and the muscular reactivation of the BF and VM after TKA, while reducing the real-time use of the VM. This observation may suggest the feasibility of this technique: EEGR modulated the neuronal system of the patients rather than training their muscles. However, because the study was underpowered, all of the findings should be interpreted with the utmost caution.


Asunto(s)
Artroplastia de Reemplazo de Rodilla/rehabilitación , Osteoartritis de la Rodilla/rehabilitación , Osteoartritis de la Rodilla/cirugía , Robótica/instrumentación , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Terapia por Ejercicio , Femenino , Marcha , Humanos , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/cirugía , Movimiento , Osteoartritis de la Rodilla/fisiopatología , Estudios Prospectivos , Recuperación de la Función , Robótica/métodos , Método Simple Ciego , Andadores , Soporte de Peso/fisiología
8.
Micromachines (Basel) ; 12(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375050

RESUMEN

In the field of engineered organ and drug development, three-dimensional network-structured tissue has been a long-sought goal. This paper presents a direct hydrogel extrusion process exposed to an ultrasound standing wave that aligns fibroblast cells to form a network structure. The frequency-shifted (2 MHz to 4 MHz) ultrasound actuation of a 400-micrometer square-shaped glass capillary that was continuously perfused by fibroblast cells suspended in sodium alginate generated a hydrogel string, with the fibroblasts aligned in single or quadruple streams. In the transition from the one-cell stream to the four-cell streams, the aligned fibroblast cells were continuously interconnected in the form of a branch and a junction. The ultrasound-exposed fibroblast cells displayed over 95% viability up to day 10 in culture medium without any significant difference from the unexposed fibroblast cells. This acoustofluidic method will be further applied to create a vascularized network by replacing fibroblast cells with human umbilical vein endothelial cells.

9.
Biofabrication ; 12(4): 045033, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32970614

RESUMEN

Human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) were coaxially and continuously extruded without ultraviolet illumination using a microfluidic-based nozzle. Type I collagen (3 mg ml-1) containing HUVECs and a crosslinking reagent (100 mM CaCl2) were supplied as the core material. A mixture of 3 mg ml-1 of type I collagen (25%) and 1.8% weight volume-1 of sodium alginate (75%) was provided as the shell layer material surrounding the core material. The HUVECs were well proliferated at the core and reshaped into a monolayer formation along the axial direction of the scaffold. The HASMCs showed more than 90% cell viability in the shell layer. Fluorescent beads were passed through the inside channel of the scaffold with the HUVEC core and HASMC shell using an in-house connector. This double-layered scaffold showed higher angiogenesis in growth factor-free medium than the scaffold with only a HUVEC core. The HASMCs in the shell layer affected angiogenesis, extracellular matrix secretion, and outer diameter. The proposed technique could be applied to three-dimensional bioprinting for the production of high-volume vascularised tissue.


Asunto(s)
Bioimpresión , Iluminación , Andamios del Tejido , Células Endoteliales de la Vena Umbilical Humana , Humanos , Impresión Tridimensional , Ingeniería de Tejidos
10.
Exp Neurobiol ; 29(4): 285-299, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32921641

RESUMEN

Neurons communicate with other neurons in response to environmental changes. Their goal is to transmit information to their targets reliably. A burst, which consists of multiple spikes within a short time interval, plays an essential role in enhancing the reliability of information transmission through synapses. In the visual system, retinal ganglion cells (RGCs), the output neurons of the retina, show bursting activity and transmit retinal information to the lateral geniculate neuron of the thalamus. In this study, to extend our interest to the population level, the burstings of multiple RGCs were simultaneously recorded using a multi-channel recording system. As the first step in network analysis, we focused on investigating the pairwise burst correlation between two RGCs. Furthermore, to assess if the population bursting is preserved across species, we compared the synchronized bursting of RGCs between marmoset monkey (callithrix jacchus), one species of the new world monkeys and mouse (C57BL/6J strain). First, monkey RGCs showed a larger number of spikes within a burst, while the inter-spike interval, burst duration, and inter-burst interval were smaller compared with mouse RGCs. Monkey RGCs showed a strong burst synchronization between RGCs, whereas mouse RGCs showed no correlated burst firing. Monkey RGC pairs showed significantly higher burst synchrony and mutual information than mouse RGC pairs did. Comprehensively, through this study, we emphasize that two species have a different bursting activity of RGCs and different burst synchronization suggesting two species have distinctive retinal processing.

11.
Medicine (Baltimore) ; 99(19): e19972, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32384447

RESUMEN

The objective of this proof-of-concept study was to demonstrate the targeted delivery of erythropoietin (EPO) using magnetically guided magnetic nanoparticles (MNPs).MNPs consisting of a ferric-ferrous mixture (FeCl3·6H2O and FeCl2·4H2O) were prepared using a co-precipitation method. The drug delivery system (DDS) was manufactured via the spray-drying technique using a nanospray-dryer. The DDS comprised 7.5 mg sodium alginate, 150 mg MNPs, and 1000 IU EPO.Scanning electron microscopy revealed DDS particles no more than 500 nm in size. Tiny particles on the rough surfaces of the DDS particles were composed of MNPs and/or EPO, unlike the smooth surfaces of the only alginate particles. Transmission electron microscopy showed the tiny particles from 5 to 20 nm in diameter. Fourier-transform infrared spectroscopy revealed DDS peaks characteristic of MNPs as well as of alginate. Thermal gravimetric analysis presented that 50% of DDS weight was lost in a single step around 500°C. The mode size of the DDS particles was approximately 850 nm under in vivo conditions. Standard soft lithography was applied to DDS particles prepared with fluorescent beads using a microchannel fabricated to have one inlet and two outlets in a Y-shape. The fluorescent DDS particles reached only one outlet reservoir in the presence of a neodymium magnet. The neurotoxicity was evaluated by treating SH-SY5Y cells in 48-well plates (1 × 10 cells/well) with 2 µL of a solution containing sodium alginate (0.075 mg/mL), MNPs (1.5 mg/mL), or sodium alginate + MNPs. A cell viability assay kit was used to identify a 93% cell viability after MNP treatment and a 94% viability after sodium alginate + MNP treatment, compared with the control. As for the DDS particle neurotoxicity, a 95% cell viability was noticed after alginate-encapsulated MNPs treatment and a 93% cell viability after DDS treatment, compared with the control.The DDS-EPO construct developed here can be small under in vivo conditions enough to pass through the lung capillaries with showing the high coating efficiency. It can be guided using magnetic control without displaying significant neurotoxicity in the form of solution or particles.


Asunto(s)
Portadores de Fármacos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Eritropoyetina/farmacología , Nanopartículas de Magnetita , Materiales Biocompatibles Revestidos/farmacología , Medios de Contraste , Fármacos Hematológicos/farmacología , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Ensayo de Materiales , Microscopía Electrónica de Rastreo/métodos , Tamaño de la Partícula , Propiedades de Superficie , Traumatismos del Sistema Nervioso/terapia
12.
PLoS One ; 14(12): e0224457, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31821335

RESUMEN

No method has yet been approved for detecting lymphedema fibrosis before its progression. This study assessed the feasibility of computed tomography-based estimation of fibrosis. This observational, cross-sectional study included patients with lymphedema affecting one limb. Three types (maximum, mean, minimum) of computed tomography reticulation indexes were digitally calculated from trans-axial images using absorptive values, and the computed tomography reticulation indexes compared with clinical scales and measurements. Of 326 patients evaluated by at least one of lymphoscintigraphy, bio-electrical impedance, and computed tomography, 24 were evaluated by all three. The mean number of computed tomography scans in these patients was 109. Sixteen patients had breast cancer, seven had gynecologic cancers, and one had primary lymphedema. Mean computed tomography reticulation index (r = 0.52, p < 0.01) and maximal computed tomography reticulation index (r = 0.45, p < 0.05) were significantly associated with time from initial limb swelling to computed tomography. Mean computed tomography reticulation index (r = 0.86, p < 0.01), minimal computed tomography reticulation index (r = 0.79, p < 0.01), and maximal computed tomography reticulation index (r = 0.68, p < 0.01) were significantly associated with International Society of Lymphedema substage. Minimal computed tomography reticulation index correlated with 1-kHz-based bio-electrical impedance ratio (r = -0.46, p < 0.05) and with standardized proximal limb circumference difference ratio (r = 0.45, p < 0.05) of both limbs. Maximal computed tomography reticulation index had a sensitivity of 0.78, specificity of 0.60, and areas under the curve of 0.66 in detecting lymphoscintigraphic stage IV. The algorithm utilizing three-dimensional computed tomography images of epifascial fibrosis may be used as a marker for lymphedema duration, limb swelling, International Society of Lymphedema substage, and interstitial lymphatic fluids of lymphedema. The current approach shows promise in providing an additional method to assist in characterizing and monitoring lymphedema patients.


Asunto(s)
Algoritmos , Fibrosis/diagnóstico , Imagenología Tridimensional/métodos , Linfedema/complicaciones , Tomografía Computarizada por Rayos X/métodos , Estudios de Cohortes , Estudios Transversales , Impedancia Eléctrica , Estudios de Factibilidad , Femenino , Fibrosis/diagnóstico por imagen , Fibrosis/etiología , Humanos , Linfocintigrafia/métodos , Masculino , Persona de Mediana Edad
13.
Micromachines (Basel) ; 9(12)2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30572645

RESUMEN

Over the past decade, synthesized nanomaterials, such as carbon nanotube, nanoparticle, quantum dot, and nanowire, have already made breakthroughs in various fields, including biomedical sensors. Enormous surface area-to-volume ratio of the nanomaterials increases sensitivity dramatically compared with macro-sized material. Herein we present a comprehensive review about the working principle and fabrication process of nanowire sensor. Moreover, its applications for the detection of biomarker, virus, and DNA, as well as for drug discovery, are reviewed. Recent advances including self-powering, reusability, sensitivity in high ionic strength solvent, and long-term stability are surveyed and highlighted as well. Nanowire is expected to lead significant improvement of biomedical sensor in the near future.

14.
ACS Appl Mater Interfaces ; 10(47): 40824-40830, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30387344

RESUMEN

Conformal growth of atomic-thick semiconductor layers on patterned substrates can boost up the performance of electronic and optoelectronic devices remarkably. However, conformal growth is a very challenging technological task, since the control of the growth processes requires utmost precision. Herein, we report on conformal growth and characterization of monolayer MoS2 on planar, microrugged, and nanorugged SiO2/Si substrates via metal-organic chemical vapor deposition. The continuous and conformal nature of monolayer MoS2 on the rugged surface was verified by high-resolution transmission electron microscopy. Strain effects were examined by photoluminescence (PL) and Raman spectroscopy. Interestingly, the photoresponsivity (∼254.5 mA/W) of as-grown MoS2 on the nanorugged substrate was 59 times larger than that of the planar sample (4.3 mA/W) under a small applied bias of 0.1 V. This value is record high when compared with all previous MoS2-based photocurrent generation under low or zero bias. Such enhancement in the photoresponsivity arises from a large active area for light-matter interaction and local strain for PL quenching, wherein the latter effect is the key factor and unique in the conformally grown monolayer on the nanorugged surface.

15.
Sensors (Basel) ; 18(10)2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275417

RESUMEN

Silicon nanowires (SiNWs) have received attention in recent years due to their anomalous piezoresistive (PZR) effects. Although the PZR effects of SiNWs have been extensively researched, they are still not fully understood. Herein, we develop a new model of the PZR effects of SiNWs to characterize the PZR effects. First, the resistance of SiNW is modeled based on the surface charge density. The characteristics of SiNW, such as surface charge and effective conducting area, can be estimated by using this resistance model. Then, PZR effects are modeled based on stress concentration and piezopinch effects. Stress concentration as a function of the physical geometry of SiNWs can amplify PZR effects by an order of magnitude. The piezopinch effects can also result in increased PZR effects that are at least two times greater than that of bulk silicon. Experimental results show that the proposed model can predict the PZR effects of SiNWs accurately.

16.
Sci Rep ; 8(1): 2343, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402908

RESUMEN

To overcome the limitation of short-term efficacy of virtual reality (VR), an enhanced reality (ER) analgesia, (combination of the VR, real-time motion capture, mirror therapy [MT]) involving a high degree of patients' presence or embodiment was explored. Patients, who underwent unilateral total knee arthroplasty (TKA), received ER analgesia. The duration was 5 times a week, for 2 weeks for one group and 5 times a week, for 1 week in the other. Visual Analogue Scale (VAS) at rest and during movement, active knee range of motion (ROM) for flexion and extension were measured repeatedly. After screening 157 patients, 60 were included. Pre-interventional evaluation was performed at 6.7 days and ER was initiated at 12.4 days after surgery. Evaluation was performed at 5, 12, 33 days after the initiation of ER. Analgesia in the 2 week therapy group was effective until the third evaluation (p = 0.000), whereas in the other group, it was effective only until the second evaluation (p = 0.010). Improvement in ROM in the 2 week group was also maintained until the third evaluation (p = 0.037, p = 0.009). It could lay the foundations for the development of safe and long-lasting analgesic tools.


Asunto(s)
Analgesia/métodos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Dolor Postoperatorio/terapia , Terapia de Exposición Mediante Realidad Virtual , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Rango del Movimiento Articular , Resultado del Tratamiento
17.
Korean J Physiol Pharmacol ; 21(5): 555-563, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28883759

RESUMEN

Electrical stimulation through retinal prosthesis elicits both short and long-latency retinal ganglion cell (RGC) spikes. Because the short-latency RGC spike is usually obscured by electrical stimulus artifact, it is very important to isolate spike from stimulus artifact. Previously, we showed that topographic prominence (TP) discriminator based algorithm is valid and useful for artifact subtraction. In this study, we compared the performance of forward backward (FB) filter only vs. TP-adopted FB filter for artifact subtraction. From the extracted retinae of rd1 mice, we recorded RGC spikes with 8×8 multielectrode array (MEA). The recorded signals were classified into four groups by distances between the stimulation and recording electrodes on MEA (200-400, 400-600, 600-800, 800-1000 µm). Fifty cathodic phase-1st biphasic current pulses (duration 500 µs, intensity 5, 10, 20, 30, 40, 50, 60 µA) were applied at every 1 sec. We compared false positive error and false negative error in FB filter and TP-adopted FB filter. By implementing TP-adopted FB filter, short-latency spike can be detected better regarding sensitivity and specificity for detecting spikes regardless of the strength of stimulus and the distance between stimulus and recording electrodes.

18.
Am J Phys Med Rehabil ; 96(11): 838-842, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28604410

RESUMEN

OBJECTIVE: The aim of the study was to investigate feasibility and functional changes of simulated microgravity with 6-degree head-down-tilt (HDT) bed rest in acute ischemic stroke. DESIGN: Patients without lesions in the cingulate cortex and/or cerebellum were enrolled. They underwent HDT for 30 minutes twice per day for 10 weekdays. Systolic blood pressure, diastolic blood pressure, and heart rate were measured before the HDT, immediately after, and also 30 minutes after the stop. Mini-Mental State Examination, Geriatric Depression Scale, Neurobehavioral Tests (i.e., span test, finger-tapping test, continuous performance test, and trail-making test) were conducted before and after the 10-day HDT. RESULTS: One male and four female patients (median age = 64.6 yrs [SD = 10.5 yrs]) were recruited. Changes in the finger-tapping test (57.80 [SD = 40.96 ] vs. 85.80 [SD = 0.46], P = 0.08) and in the digit span backward test (3.60 [SD = 1.14] vs. 1.42 [SD = 1.75], P = 0.07) were noticed. Few changes were found in other scales. No significant changes in systolic blood pressure, diastolic blood pressure, or heart rate were observed, and no adverse effects occurred. CONCLUSIONS: The 6-degree HDT revealed no adverse effects on the cardiovascular system, showing nonsignificant increment in the finger-tapping test (representative of motor speed and performance) and nonsignificant reduction in the digit backward span test (representative of spatial memory).


Asunto(s)
Desempeño Psicomotor/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Simulación de Ingravidez/métodos , Anciano , Reposo en Cama , Presión Sanguínea/fisiología , Estudios de Factibilidad , Femenino , Inclinación de Cabeza , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
19.
J Neural Eng ; 14(1): 016017, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28045002

RESUMEN

OBJECTIVE: Direct stimulation of retinal ganglion cells in degenerate retinas by implanting epi-retinal prostheses is a recognized strategy for restoration of visual perception in patients with retinitis pigmentosa or age-related macular degeneration. Elucidating the best stimulus-response paradigms in the laboratory using multielectrode arrays (MEA) is complicated by the fact that the short-latency spikes (within 10 ms) elicited by direct retinal ganglion cell (RGC) stimulation are obscured by the stimulus artifact which is generated by the electrical stimulator. APPROACH: We developed an artifact subtraction algorithm based on topographic prominence discrimination, wherein the duration of prominences within the stimulus artifact is used as a strategy for identifying the artifact for subtraction and clarifying the obfuscated spikes which are then quantified using standard thresholding. MAIN RESULTS: We found that the prominence discrimination based filters perform creditably in simulation conditions by successfully isolating randomly inserted spikes in the presence of simple and even complex residual artifacts. We also show that the algorithm successfully isolated short-latency spikes in an MEA-based recording from degenerate mouse retinas, where the amplitude and frequency characteristics of the stimulus artifact vary according to the distance of the recording electrode from the stimulating electrode. By ROC analysis of false positive and false negative first spike detection rates in a dataset of one hundred and eight RGCs from four retinal patches, we found that the performance of our algorithm is comparable to that of a generally-used artifact subtraction filter algorithm which uses a strategy of local polynomial approximation (SALPA). SIGNIFICANCE: We conclude that the application of topographic prominence discrimination is a valid and useful method for subtraction of stimulation artifacts with variable amplitudes and shapes. We propose that our algorithm may be used as stand-alone or supplementary to other artifact subtraction algorithms like SALPA.


Asunto(s)
Potenciales de Acción/fisiología , Algoritmos , Artefactos , Estimulación Eléctrica/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Tiempo de Reacción/fisiología , Células Ganglionares de la Retina/fisiología , Animales , Análisis Discriminante , Ratones , Ratones Endogámicos C3H , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis Espacio-Temporal
20.
Ann Rehabil Med ; 40(5): 794-805, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27847709

RESUMEN

OBJECTIVE: To investigate the feasibility of the use of the oropharyngeal airway (OPA) during intermittent oroesophageal tube (IOET) feeding. METHODS: Ten patients, who were evaluated using the videofluoroscopic swallowing study (VFSS), were enrolled. One patient withdrew from the study during the study period. Tube insertion time with and without OPA use was recorded in the same patients in a random order during the VFSS. Patients who could safely undergo IOET feeding were then randomly allocated to 2 groups (OPA and non-OPA). Satisfaction Questionnaire with Gastrostomy Feeding (SAGA-8) scores and pneumonia incidence were assessed on the 3rd and 10th day after the VFSS. Non-parametric analysis was used for statistical analyses. RESULTS: The IOET insertion time was significantly shorter in the OPA group than in the non-OPA group (17.72±5.79 vs. 25.41±10.41 seconds; p=0.017). Complications were not significantly different between the 2 groups (p=0.054). Furthermore, although there were no significant differences in the SAGA-8 scores (25.50±2.38 vs. 21.40±3.13; p=0.066), which reflect the patient/caregiver satisfaction and the ease of tube insertion, patients in the OPA group tended to be more satisfied with the feeding procedure. CONCLUSION: Although the small size of the study cohort is a limitation of our study, the use of the OPA appears to be beneficial during IOET feeding in patients with dysphagia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...