Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Vet Sci Med ; 12(1): 81-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139714

RESUMEN

Preservation of native Korean bats is crucial for maintaining ecological balance, as they play a vital role in insect control, pollination, and seed dispersal within their ecosystems. The present study details the establishment of bat induced pluripotent stem cells (BatiPSCs) from two Asian and Korean bats (Hypsugo alaschanicus and Pipistrellus abramus) using the Sendai Reprogramming Kit. Colonies of BatiPSCs, exhibiting distinctive features, were manually selected and expanded following successful transfection. Characterization of BatiPSCs revealed the expression of pluripotency markers, such as Octamer-binding transcription factor 4 (Oct4), SRY (sex-determining region Y)-box 2 and Nanog, with notably increased Oct4 levels and reduced Myc proto-oncogene expression compared with those noted in other induced pluripotent stem cell sources. BatiPSCs displayed positive staining for alkaline phosphatase and demonstrated the ability to form embryoid bodies, while also inducing teratomas in non-immune nude mice. Additionally, green fluorescent protein (GFP)-expressing BatiPSCs were generated and used for chimeric mouse production, with slight GFP signals detected in the neck region of the resulting mouse foetuses. These findings demonstrate the successful generation and characterization of BatiPSCs, emphasizing their potential applications in chimeric animal models, and the protection of endangered bat species.

2.
Anim Biotechnol ; 34(9): 4730-4735, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36905152

RESUMEN

Gene integration at site-specific loci is a critical approach for understanding the function of a gene in cells or animals. The AAVS1 locus is a well-known safe harbor for human and mouse studies. In this study, we found an AAVS1-like sequence (pAAVS1) in the porcine genome using the Genome Browser and designed TALEN and CRISPR/Cas9 to target the pAAVS1. The efficiency of CRISPR/Cas9 in porcine cells was superior to that of TALEN. We added a loxP-lox2272 sequences to the pAAVS1 targeting donor vector containing GFP for further exchange of various transgenes via recombinase-mediated cassette exchange (RMCE). The donor vector and CRISPR/Cas9 components were transfected into porcine fibroblasts. Targeted cells of CRISPR/Cas9-mediated homologous recombination were identified by antibiotic selection. Gene knock-in was confirmed by PCR. To induce RMCE, another donor vector containing the loxP-lox2272 and inducible Cre recombinase was cloned. The Cre-donor vector was transfected into the pAAVS1 targeted cell line, and RMCE was induced by adding doxycycline to the culture medium. RMCE in porcine fibroblasts was confirmed using PCR. In conclusion, gene targeting at the pAAVS1 and RMCE in porcine fibroblasts was successful. This technology will be useful for future porcine transgenesis studies and the generation of stable transgenic pigs.


Asunto(s)
Sistemas CRISPR-Cas , Recombinasas , Animales , Porcinos/genética , Humanos , Ratones , Recombinasas/genética , Recombinasas/metabolismo , Sistemas CRISPR-Cas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Animales Modificados Genéticamente/metabolismo , Marcación de Gen
3.
Cells ; 11(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36231141

RESUMEN

Extracellular vesicles (EVs) are nanosized vesicles that act as snapshots of cellular components and mediate cellular communications, but they may contain cargo contents with undesired effects. We developed a model to improve the effects of endometrium-derived EVs (Endo-EVs) on the porcine embryo attachment in feeder-free culture conditions. Endo-EVs cargo contents were analyzed using conventional and real-time PCR for micro-RNAs, messenger RNAs, and proteomics. Porcine embryos were generated by parthenogenetic electric activation in feeder-free culture conditions supplemented with or without Endo-EVs. The cellular uptake of Endo-EVs was confirmed using the lipophilic dye PKH26. Endo-EVs cargo contained miR-100, miR-132, and miR-155, together with the mRNAs of porcine endogenous retrovirus (PERV) and ß-catenin. Targeting PERV with CRISPR/Cas9 resulted in reduced expression of PERV mRNA transcripts and increased miR-155 in the Endo-EVs, and supplementing these in embryos reduced embryo attachment. Supplementing the medium containing Endo-EVs with miR-155 inhibitor significantly improved the embryo attachment with a few outgrowths, while supplementing with Rho-kinase inhibitor (RI, Y-27632) dramatically improved both embryo attachment and outgrowths. Moreover, the expression of miR-100, miR-132, and the mRNA transcripts of BCL2, zinc finger E-box-binding homeobox 1, ß-catenin, interferon-γ, protein tyrosine phosphatase non-receptor type 1, PERV, and cyclin-dependent kinase 2 were all increased in embryos supplemented with Endo-EVs + RI compared to those in the control group. Endo-EVs + RI reduced apoptosis and increased the expression of OCT4 and CDX2 and the cell number of embryonic outgrowths. We examined the individual and combined effects of RI compared to those of the miR-155 mimic and found that RI can alleviate the negative effects of the miR-155 mimic on embryo attachment and outgrowths. EVs can improve embryo attachment and the unwanted effects of the de trop cargo contents (miR-155) can be alleviated through anti-apoptotic molecules such as the ROCK inhibitor.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Amidas , Animales , Quinasa 2 Dependiente de la Ciclina/metabolismo , Endometrio/metabolismo , Vesículas Extracelulares/metabolismo , Femenino , Interferón gamma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Piridinas , ARN Mensajero/metabolismo , Porcinos , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , beta Catenina/metabolismo , Quinasas Asociadas a rho/metabolismo
5.
Sci Rep ; 12(1): 12905, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902672

RESUMEN

Canine hip dysplasia (HD) is a multifactorial disease caused by interactions between genetic and environmental factors. HD, which mainly occurs in medium- to large-sized dogs, is a disease that causes severe pain and requires surgical intervention. However, the procedure is not straight-forward, and the only way to ameliorate the situation is to exclude individual dogs with HD from breeding programs. Recently, prime editing (PE), a novel genome editing tool based on the CRISPR-Cas9 system, has been developed and validated in plants and mice. In this study, we successfully corrected a mutation related to HD in Labrador retriever dogs for the first time. We collected cells from a dog diagnosed with HD, corrected the mutation using PE, and generated mutation-corrected dogs by somatic cell nuclear transfer. The results indicate that PE technology can potentially be used as a platform to correct genetic defects in dogs.


Asunto(s)
Displasia Pélvica Canina , Animales , Sistemas CRISPR-Cas , Perros , Edición Génica , Displasia Pélvica Canina/diagnóstico , Displasia Pélvica Canina/genética , Displasia Pélvica Canina/patología , Ratones , Mutación
6.
BMC Biotechnol ; 22(1): 19, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831828

RESUMEN

BACKGROUND: Canine cloning technology based on somatic cell nuclear transfer (SCNT) combined with genome-editing tools such as CRISPR-Cas9 can be used to correct pathogenic mutations in purebred dogs or to generate animal models of disease. RESULTS: We constructed a CRISPR-Cas9 vector targeting canine DJ-1. Genome-edited canine fibroblasts were established using vector transfection and antibiotic selection. We performed canine SCNT using genome-edited fibroblasts and successfully generated two genome-edited dogs. Both genome-edited dogs had insertion-deletion mutations at the target locus, and DJ-1 expression was either downregulated or completely repressed. CONCLUSION: SCNT successfully produced genome-edited dogs by using the CRISPR-Cas9 system for the first time.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Transferencia Nuclear , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Clonación de Organismos , Perros , Edición Génica
7.
Nat Commun ; 13(1): 2793, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589735

RESUMEN

Although stromal fibroblasts play a critical role in cancer progression, their identities remain unclear as they exhibit high heterogeneity and plasticity. Here, a master transcription factor (mTF) constructing core-regulatory circuitry, PRRX1, which determines the fibroblast lineage with a myofibroblastic phenotype, is identified for the fibroblast subgroup. PRRX1 orchestrates the functional drift of fibroblasts into myofibroblastic phenotype via TGF-ß signaling by remodeling a super-enhancer landscape. Such reprogrammed fibroblasts have myofibroblastic functions resulting in markedly enhanced tumorigenicity and aggressiveness of cancer. PRRX1 expression in cancer-associated fibroblast (CAF) has an unfavorable prognosis in multiple cancer types. Fibroblast-specific PRRX1 depletion induces long-term and sustained complete remission of chemotherapy-resistant cancer in genetically engineered mice models. This study reveals CAF subpopulations based on super-enhancer profiles including PRRX1. Therefore, mTFs, including PRRX1, provide another opportunity for establishing a hierarchical classification system of fibroblasts and cancer treatment by targeting fibroblasts.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos/metabolismo , Ratones , Miofibroblastos , Neoplasias/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269602

RESUMEN

We determined the specificity of mutations induced by the CRISPR-Cas9 gene-editing system in tobacco (Nicotiana benthamiana) alleles and subsequent genetic stability. For this, we prepared 248 mutant plants using an Agrobacterium-delivered CRISPR-Cas9 system targeting α-1,3-fucosyltransferase 1 (FucT1) and ß-1,2-xylosyltransferase1 (XylT1) genes, for which the mutation rates were 22.5% and 25%, respectively, with 20.5% for both loci. Individuals with wild-type (WT) alleles at the NbFucT1 locus in T0 were further segregated into chimeric progeny (37-54%) in the next generation, whereas homozygous T0 mutants tended to produce more (~70%) homozygotes than other bi-allelic and chimeric progenies in the T1 generation. Approximately 81.8% and 77.4% of the homozygous and bi-allelic mutations in T0 generation, respectively, were stably inherited in the next generation, and approximately 50% of the Cas9-free mutants were segregated in T2 generation. One homozygous mutant (Ta 161-1) with a +1 bp insertion in NbFucT1 and a -4 bp deletion in NbXylT1 was found to produce T2 progenies with the same alleles, indicating no activity of the integrated Cas9 irrespective of the insertion or deletion type. Our results provide empirical evidence regarding the genetic inheritance of alleles at CRISPR-targeted loci in tobacco transformants and indicate the potential factors contributing to further mutagenesis.


Asunto(s)
Sistemas CRISPR-Cas , Nicotiana , Alelos , Sistemas CRISPR-Cas/genética , Fucosiltransferasas , Edición Génica/métodos , Genes de Plantas , Humanos , Mutación , Pentosiltransferasa , Plantas Modificadas Genéticamente/genética , Nicotiana/genética , UDP Xilosa Proteína Xilosiltransferasa
9.
Front Genome Ed ; 4: 823486, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187530

RESUMEN

Hemp (Cannabis sativa L.) is a multipurpose crop with many important uses including medicine, fibre, food and biocomposites. This plant is currently gaining prominence and acceptance for its valuable applications. Hemp is grown as a cash crop for its novel cannabinoids which are estimated to be a multibillion-dollar downstream market. Hemp cultivation can play a major role in carbon sequestration with good CO2 to biomass conversion in low input systems and can also improve soil health and promote phytoremediation. The recent advent of genome editing tools to produce non-transgenic genome-edited crops with no trace of foreign genetic material has the potential to overcome regulatory hurdles faced by genetically modified crops. The use of Artificial Intelligence - mediated trait discovery platforms are revolutionizing the agricultural industry to produce desirable crops with unprecedented accuracy and speed. However, genome editing tools to improve the beneficial properties of hemp have not yet been deployed. Recent availability of high-quality Cannabis genome sequences from several strains (cannabidiol and tetrahydrocannabinol balanced and CBD/THC rich strains) have paved the way for improving the production of valuable bioactive molecules for the welfare of humankind and the environment. In this context, the article focuses on exploiting advanced genome editing tools to produce non-transgenic hemp to improve the most industrially desirable traits. The challenges, opportunities and interdisciplinary approaches that can be adopted from existing technologies in other plant species are highlighted.

10.
Animals (Basel) ; 11(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34944345

RESUMEN

Multiplex genome editing may induce genotoxicity and chromosomal rearrangements due to double-strand DNA breaks at multiple loci simultaneously induced by programmable nucleases, including CRISPR/Cas9. However, recently developed base-editing systems can directly substitute target sequences without double-strand breaks. Thus, the base-editing system is expected to be a safer method for multiplex genome-editing platforms for livestock. Target-AID is a base editing system composed of PmCDA1, a cytidine deaminase from sea lampreys, fused to Cas9 nickase. It can be used to substitute cytosine for thymine in 3-5 base editing windows 18 bases upstream of the protospacer-adjacent motif site. In the current study, we demonstrated Target-AID-mediated base editing in porcine cells for the first time. We targeted multiple loci in the porcine genome using the Target-AID system and successfully induced target-specific base substitutions with up to 63.15% efficiency. This system can be used for the further production of various genome-engineered pigs.

11.
Sci Rep ; 11(1): 22745, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815492

RESUMEN

Although Krüppel-associated box domain-containing zinc-finger proteins (K-ZNFs) may be associated with sophisticated gene regulation in higher organisms, the physiological functions of most K-ZNFs remain unknown. The Zfp212 protein was highly conserved in mammals and abundant in the brain; it was mainly expressed in the cerebellum (Cb). Zfp212 (mouse homolog of human ZNF212) knockout (Zfp212-KO) mice showed a reduction in survival rate compared to wild-type mice after 20 months of age. GABAergic Purkinje cell degeneration in the Cb and aberrant locomotion were observed in adult Zfp212-KO mice. To identify genes related to the ataxia-like phenotype of Zfp212-KO mice, 39 ataxia-associated genes in the Cb were monitored. Substantial alterations in the expression of ataxin 10, protein phosphatase 2 regulatory subunit beta, protein kinase C gamma, and phospholipase D3 (Pld3) were observed. Among them, Pld3 alone was tightly regulated by Flag-tagged ZNF212 overexpression or Zfp212 knockdown in the HT22 cell line. The Cyclic Amplification and Selection of Targets assay identified the TATTTC sequence as a recognition motif of ZNF212, and these motifs occurred in both human and mouse PLD3 gene promoters. Adeno-associated virus-mediated introduction of human ZNF212 into the Cb of 3-week-old Zfp212-KO mice prevented Purkinje cell death and motor behavioral deficits. We confirmed the reduction of Zfp212 and Pld3 in the Cb of an alcohol-induced cerebellar degeneration mouse model, suggesting that the ZNF212-PLD3 relationship is important for Purkinje cell survival.


Asunto(s)
Ataxia/patología , Proteínas de Unión al ADN/metabolismo , Trastornos Neurológicos de la Marcha/patología , Proteínas del Tejido Nervioso/fisiología , Fosfolipasa D/antagonistas & inhibidores , Células de Purkinje/patología , Animales , Ataxia/etiología , Proteínas de Unión al ADN/administración & dosificación , Proteínas de Unión al ADN/genética , Trastornos Neurológicos de la Marcha/etiología , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/administración & dosificación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/metabolismo
12.
Biochem Biophys Res Commun ; 563: 98-104, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34062393

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary liver cancer to cause liver cancer related deaths worldwide. Zinc finger protein 746 (ZNF746), initially identified as a Parkin-interacting substrate (PARIS), acts as a transcriptional repressor of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in Parkinson's disease. As recent studies reported that PARIS is associated with cancer onset, we investigated whether PARIS is associated with HCC. We found an increase in insoluble parkin and PARIS accumulation in the liver of diethylnitrosamine (DEN)-injected mice, leading to the downregulation of PGC-1α and nuclear respiratory factor 1 (NRF1). Interestingly, the occurrence of DEN-induced tumors was significantly alleviated in the livers of DEN-injected PARIS knockout mice compared to DEN-injected wild-type mice, suggesting that PARIS is involved in DEN-induced hepatocellular tumorigenesis. Moreover, H2O2-treated Chang liver cells showed accumulation of PARIS and downregulation of PGC-1α and NRF1. Thus, these results suggest that PARIS upregulation by oncogenic stresses can promote cancer progression by suppressing the transcriptional level of PGC-1α, and the modulation of PARIS can be a promising therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Represoras/metabolismo , Animales , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Células Tumorales Cultivadas
13.
Sci Rep ; 10(1): 19967, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177632

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Sci Rep ; 10(1): 11148, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636400

RESUMEN

Thyroid hormone (TH) has long been believed to play a minor role in male reproduction. However, evidences from experimental model of thyrotoxicosis or hypothyroidism suggests its role in spermatogenesis. Cellular action of TH requires membrane transport via specific transporters such as monocarboxylate transporter 8 (MCT8). SLC16A2 (encodes for MCT8) inactivating mutation in humans can lead to Allan-Herndon Dudley-syndrome, a X-linked psychomotor and growth retardation. These patients present cryptorchidism which suggests a role of MCT8 during spermatogenesis. In this study, we found that Mct8 is highly expressed during early postnatal development and decreases its expression in the adulthood of testis of wild-type male rats. Histological analysis revealed that spermatogonia largely lacks MCT8 expression while spermatocytes and maturing spermatids highly express MCT8. To further understand the role of Mct8 during spermatogenesis, we generated Slc16a2 (encodes MCT8) knockout rats using CRISPR/Cas9. Serum THs (T3 and T4) level were significantly altered in Slc16a2 knockout rats when compared to wild-type littermates during early to late postnatal development. Unlike Slc16a2 knockout mice, Slc16a2 knockout rats showed growth delay during early to late postnatal development. In adult Slc16a2 knockout rats, we observed reduced sperm motility and viability. Collectively, our data unveil a functional involvement of MCT8 in spermatogenesis, underscoring the importance of TH signaling and action during spermatogenesis.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos/fisiología , Espermatozoides/crecimiento & desarrollo , Testículo/crecimiento & desarrollo , Animales , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Edición Génica/métodos , Técnicas de Silenciamiento del Gen/métodos , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ratas , Ratas Sprague-Dawley , Espermatogénesis/genética , Espermatogénesis/fisiología , Espermatozoides/fisiología , Testículo/metabolismo , Glándula Tiroides/metabolismo , Glándula Tiroides/fisiología
15.
Cell Reprogram ; 21(1): 26-36, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30735078

RESUMEN

The potential of induced pluripotent stem (iPS) cells, which have self-renewal ability and can differentiate into three germ layers, led us to hypothesize that iPS cells in pigs can be useful and suitable source for producing transgenic pigs. In this study, we generated iPS-like cells using doxycycline-inducible piggyBac (PB) expression vectors encoding porcine 4 transcription factors. After transfection, transfected cells were cultured until the formation of outgrowing colonies taking least of 7-10 days. The iPS-like cells demonstrated pluripotent characteristics such as self-renewal, high proliferation, expression of pluripotent markers, and aggregation ability. The embryo development through somatic cell nuclear transfer (SCNT), cleavage rate, and blastocyst formation rate did not show any significant differences. However, the total cell number of blastocysts was significantly increased with the established cell line. In conclusion, the iPS-like cell line, generated from porcine transcriptional factors using the PB transposon system, demonstrated pluripotency with the capacity for unlimited self-renewal, and could be used as donor cells to produce cloned embryos by SCNT. These cells will be suitable for gene modification and would contribute to the stability or safety of pig models in biomedical research.


Asunto(s)
Blastocisto/citología , Técnicas de Cultivo de Célula , Clonación de Organismos , Regulación del Desarrollo de la Expresión Génica , Porcinos/embriología , Animales , Animales Modificados Genéticamente , Blastocisto/fisiología , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Cultivadas , Desarrollo Embrionario , Fibroblastos , Técnicas de Transferencia Nuclear/veterinaria , Células Madre Pluripotentes/citología , Transfección
16.
Nat Protoc ; 13(12): 2844-2863, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30390050

RESUMEN

The CRISPR-Cas9 genome-editing tool and the availability of whole-genome sequences from plant species have revolutionized our ability to introduce targeted mutations into important crop plants, both to explore genetic changes and to introduce new functionalities. Here, we describe protocols adapting the CRISPR-Cas9 system to apple and grapevine plants, using both plasmid-mediated genome editing and the direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to achieve efficient DNA-free targeted mutations in apple and grapevine protoplasts. We provide a stepwise protocol for the design and transfer of CRISPR-Cas9 components to apple and grapevine protoplasts, followed by verification of highly efficient targeted mutagenesis, and regeneration of plants following the plasmid-mediated delivery of components. Our plasmid-mediated procedure and the direct delivery of CRISPR-Cas9 RNPs can both be utilized to modulate traits of interest with high accuracy and efficiency in apple and grapevine, and could be extended to other crop species. The complete protocol employing the direct delivery of CRISPR-Cas9 RNPs takes as little as 2-3 weeks, whereas the plasmid-mediated procedure takes >3 months to regenerate plants and study the mutations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Malus/genética , Mutagénesis , Vitis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma de Planta , Mutación , Plantas Modificadas Genéticamente/genética , Plásmidos/genética
17.
Primates ; 57(4): 471-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27165688

RESUMEN

Monkey interorder somatic cell nuclear transfer (iSCNT) using enucleated cow oocytes yielded poor blastocysts development and contradictory results among research groups. Determining the reason for this low blastocyst development is a prerequisite for optimizing iSCNT in rhesus monkeys. The aim of this study was to elucidate nuclear-mitochondrial incompatibility of rhesus monkey-cow iSCNT embryos and its relationship to low blastocyst development. Cytochrome b is a protein of complex III of the electron transport chain (ETC). According to meta-analysis of amino acid sequences, the homology of cytochrome b is 75 % between rhesus monkeys and cattle. To maintain the function of ETC after iSCNT, 4n iSCNT embryos were produced by fusion of non-enucleated cow oocytes and rhesus monkey somatic cells. The blastocyst development rate of 4n iSCNT embryos was higher than that of 2n embryos (P < 0.01). Formation of reactive oxygen species (ROS) is an indirect indicator of ETC activity of cells. The ROS levels of 4n iSCNT embryos was higher than that of 2n embryos (P < 0.01). Collectively, rhesus monkey iSCNT embryos reconstructed with cow oocytes have nuclear-mitochondrial incompatibility due to fundamental species differences between rhesus monkeys and cattle. Nuclear-mitochondrial incompatibility seems to correlate with low ETC activity and extremely low blastocyst development of rhesus monkey-cow iSCNT embryos.


Asunto(s)
Blastocisto/fisiología , Núcleo Celular/genética , Macaca mulatta/embriología , Mitocondrias/genética , Técnicas de Transferencia Nuclear , Oocitos/fisiología , Animales , Blastocisto/citología , Bovinos , Complejo III de Transporte de Electrones/genética , Oocitos/citología
18.
Front Plant Sci ; 7: 1904, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066464

RESUMEN

The combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties. Here, we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit crop plants for efficient targeted mutagenesis. We targeted MLO-7, a susceptible gene in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-2, and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore, efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate was analyzed using targeted deep sequencing. Our results demonstrate that direct delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing and paves the way to the generation of DNA-free genome edited grapevine and apple plants.

19.
J Cell Biochem ; 117(6): 1454-63, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26565392

RESUMEN

Non-metastatic cells 1 (NME1) or nm23 is the first metastasis suppressor gene discovered. It functions through various enzymatic activities and interacts with many intracellular proteins. The NME1 gene encodes two splicing variants, NME1 and NME1L. Most studies have focused on NME1 because of its abundance in cells. We previously reported NME1L-mediated suppression of NF-κB signaling by interacting with and inhibiting IKKß. In this study, we demonstrated that NME1L, but not NME1, mediated inhibition of cell proliferation, although both NME1 and NME1L were involved in suppressing metastasis. A reporter gene assay was performed to determine the growth signaling pathway regulated by NME1L but none of the growth factors tested could induce an NF-κB-dependent luciferase expression except TNFα. Interestingly, SRE-reporter gene activation by IGF1 was significantly downregulated, along with reduction of ERK phosphorylation in NME1L expressing cells, compared to vector or NME1 expressing cells. NME1L directly interacted with KSR1, which is a scaffold for Raf-1, MEK, and ERK, that regulates ERK activation. Hence, NME1L plays a crucial role in regulation of cell proliferation by inhibiting IGF1-stimulated ERK phosphorylation through N-terminal 25 amino acid-mediated interaction with KSR1.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Proteínas Quinasas/metabolismo , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Células MCF-7 , Metástasis de la Neoplasia , Isoformas de Proteínas/metabolismo
20.
Cell Signal ; 27(11): 2173-81, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26296658

RESUMEN

IκB kinases (IKKs) are a therapeutic target due to their crucial roles in various biological processes, including the immune response, the stress response, and tumor development. IKKs integrate various upstream signals that activate NF-κB by phosphorylating IκB and also regulate many proteins related to cell growth and metabolism. Although they function as a heteromeric complex comprised of kinase subunits and an adaptor, these kinases produce distinct cellular responses by phosphorylating different target molecules, suggesting that they may also be regulated in a subtype-specific manner. In this study, arfaptin 2 was identified as an IKKß-specific binding partner. Interestingly, arfaptin 2 also interacted with NEMO. Domain mapping studies revealed that the C-terminal region, including the IKKß HLH domain and the first coiled-coil NEMO region were respectively required for interactions with the arfaptin 2 N-terminal flexible region. Overexpression of arfaptin 2 inhibited tumor necrosis factor (TNF)-α-stimulated nuclear factor-κB (NF-κB) signaling, whereas downregulation of arfaptin 2 by small interfering RNA enhanced NF-κB activity. Dimerization of arfaptin 2 through the Bin-Amphiphysin-Rvs domain may be essential to inhibit activation of NF-κB through multimodal interactions with IKKßs or IKKß/NEMO, as ectopic expression of the arfaptin 2 fragment responsible for IKK interactions did not change TNFα-stimulated NF-κB activation. These data indicate that arfaptin 2 is the first molecule to regulate NF-κB signaling by interacting with the functional IKK complex but not by direct inhibiting IKKß phosphorylation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Quinasa I-kappa B/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular , Dimerización , Células HEK293 , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...