Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Pharm Res ; 47(4): 360-376, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38551761

RESUMEN

Novel psychoactive substances (NPSs) are new psychotropic drugs designed to evade substance regulatory policies. 25E-NBOMe (2-(4-ethyl-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine) has recently been identified as an NPS, and its recreational misuse has been reported to be rapidly increasing. However, the psychopharmacological effects and mechanisms of 25E-NBOMe have not been studied. We examined the abuse potential of 25E-NBOMe using the conditioned place preference in male mice and self-administration paradigms in male rats. Additionally, immunoblot assay, enzyme-linked immunosorbent assay, and microdialysis were used to determine the molecular effects of 25E-NBOMe in the nucleus accumbens (NAc). Our data demonstrated that 25E-NBOMe induces conditioned place preference, and the dopaminergic signaling in the NAc mediates these. Following 25E-NBOMe administration, expression of dopamine transporter and dopamine D1 receptor (D1DR) were enhanced in the NAc of male mice, and NAc dopamine levels were reduced in both male mice and rats. Induction of intracellular dopaminergic pathways, DARPP32, and phosphorylation of CREB in the NAc of male mice was also observed. Significantly, pharmacological blockade of D1DR or chemogenetic inhibition of D1DR-expressing medium spiny neurons in the NAc attenuated 25E-NBOMe-induced conditioned place preference in male mice. We also examined the hallucinogenic properties of 25E-NBOMe using the head twitch response test in male mice and found that this behavior was mediated by serotonin 2A receptor activity. Our findings demonstrate that D1DR signaling may govern the addictive potential of 25E-NBOMe. Moreover, our study provides new insights into the potential mechanisms of substance use disorder and the improvement of controlled substance management.


Asunto(s)
Núcleo Accumbens , Psicotrópicos , Receptores de Dopamina D1 , Recompensa , Transducción de Señal , Animales , Masculino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/agonistas , Ratones , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Psicotrópicos/farmacología , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Fenetilaminas/farmacología , Autoadministración , Dopamina/metabolismo
2.
ACS Chem Neurosci ; 14(18): 3487-3498, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695876

RESUMEN

Adinazolam (ADZ) is a benzodiazepine-type new psychoactive substance (NPS) with anxiolytic, anticonvulsant, and antidepressant effects. High ADZ doses have been reported to impair psychomotor performance and memory; however, the abuse potential and drug dependence of ADZ have not yet been fully investigated. In this study, we evaluated whether ADZ has abuse potential and leads to drug dependence and withdrawal symptoms. The intravenous self-administration (IVSA) test revealed that ADZ (0.01, 0.03, and 0.1 mg/kg/infusion) was self-administered significantly above vehicle levels, suggesting the reinforcing effect of ADZ. Furthermore, we revealed that treatment discontinuation following chronic ADZ administration (3 and 6 mg/kg) caused several somatic withdrawal symptoms in mice, including body tremor. Moreover, it induced motivational withdrawal signs, such as anxiety-related behavior in the elevated plus maze (EPM) test and memory deficits in the Y-maze test. After the IVSA test, an enzyme-linked immunosorbent assay (ELISA) showed that ADZ administration significantly increased the dopamine contents in the thalamus, nucleus accumbens (NAc), and ventral tegmental area (VTA). This finding was also supported by the results of the Western blot. Taken together, our results suggest that ADZ has abuse potential and can lead to drug dependence and withdrawal syndrome.


Asunto(s)
Roedores , Síndrome de Abstinencia a Sustancias , Animales , Ratones , Benzodiazepinas , Fármacos del Sistema Nervioso Central
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...