Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Ophthalmol ; : 11206721241237309, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433348

RESUMEN

Physiological adaptation of the eye to the visual perception of near objects consists of the "near triad": convergence, accommodation, and pupil miosis. Normally, these tend to revert when one stops fixating on a near object. Spasm of the near reflex (SNR) is a pathological phenomenon, which manifests itself by the persistence of the above-mentioned adjustments, which prevents the eye from returning to its relaxed state. In this narrative review, we aim to summarize the etiology, diagnostics, treatment, and prevention of SNR. The literature review was performed by searching online databases. The clinical presentation of SNR is diverse; it presents as isolated accommodative spasm more frequently than impairment of all three components of the near triad. Patients usually present with fluctuations in visual acuity, blurred vision, diplopia, and asthenopia. The etiology is not fully understood. Potential causes include neuroanatomic, organic, and psychogenic disorders. The diagnosis is clinical, based on the constellation of symptoms and assessment of the near triad. The diagnostic golden standard is a cycloplegic examination of refraction, preferably using cyclopentolate hydrochloride (1%, 0.5%, or 0.1% solution). The first-line treatment requires the administration of a cycloplegic drug in combination with plus lenses, flipper lenses, optical fogging, or miotics. For secondary cases, causal treatment should be implemented. Prevention of SNR should be based on eliminating modifiable risk factors. We propose including screening for SNR symptoms in every ophthalmic examination, especially among patients with psychogenic or neural disorders, after brain trauma, or young adults spending much time in front of computer screens.

2.
PLoS One ; 19(1): e0294926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38166023

RESUMEN

Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.


Asunto(s)
Betaína , Hipertensión , Ratas , Animales , Betaína/farmacología , Betaína/metabolismo , Ratas Endogámicas WKY , Diuréticos/farmacología , Eliminación Renal , Hipertensión/genética , Riñón/metabolismo , Ratas Endogámicas SHR , Presión Sanguínea , Electrólitos/metabolismo
3.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682739

RESUMEN

Evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine-oxide (TMAO), affect the course of diabetic multiorgan pathology. We hypothesized that diabetes activates the intestinal renin-angiotensin system (RAS), contributing to gut pathology. Twelve-week-old male rats were divided into three groups: controls, diabetic (streptozotocin-induced) and diabetic treated with enalapril. Histological examination and RT-qPCR were performed to evaluate morphology and RAS expression in the jejunum and the colon. SCFA and TMAO concentrations in stools, portal and systemic blood were evaluated. In comparison to the controls, the diabetic rats showed hyperplastic changes in jejunal and colonic mucosa, increased plasma SCFA, and slightly increased plasma TMAO. The size of the changes was smaller in enalapril-treated rats. Diabetic rats had a lower expression of Mas receptor (MasR) and angiotensinogen in the jejunum whereas, in the colon, the expression of MasR and renin was greater in diabetic rats. Enalapril-treated rats had a lower expression of MasR in the colon. The expression of AT1a, AT1b, and AT2 receptors was similar between groups. In conclusion, diabetes produces morphological changes in the intestines, increases plasma SCFA, and alters the expression of renin and MasR. These alterations were reduced in enalapril-treated rats. Future studies need to evaluate the clinical significance of intestinal pathology in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Sistema Renina-Angiotensina , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Enalapril/metabolismo , Enalapril/farmacología , Masculino , Ratas , Renina/metabolismo , Estreptozocina
4.
Am J Physiol Gastrointest Liver Physiol ; 321(4): G355-G366, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405730

RESUMEN

Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders.


Asunto(s)
Microbioma Gastrointestinal , Sistema Renina-Angiotensina , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Absorción Gastrointestinal , Glucosa/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA