Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14625, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918475

RESUMEN

Visfatin (VIS) is a hormone belonging to the adipokines' group secreted mainly by the adipose tissue. VIS plays a crucial role in the control of energy homeostasis, inflammation, cell differentiation, and angiogenesis. VIS expression was confirmed in the hypothalamic-pituitary-gonadal (HPG) axis structures, as well as in the uterus, placenta, and conceptuses. We hypothesised that VIS may affect the abundance of proteins involved in the regulation of key processes occurring in the corpus luteum (CL) during the implantation process in pigs. In the present study, we performed the high-throughput proteomic analysis (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the in vitro influence of VIS (100 ng/mL) on differentially regulated proteins (DRPs) in the porcine luteal cells (LCs) on days 15-16 of pregnancy (implantation period). We have identified 511 DRPs, 276 of them were up-regulated, and 235 down-regulated in the presence of VIS. Revealed DRPs were assigned to 162 gene ontology terms. Western blot analysis of five chosen DRPs, ADAM metallopeptidase with thrombospondin type 1 motif 1 (ADAMTS1), lanosterol 14-α demethylase (CYP51A1), inhibin subunit beta A (INHBA), notch receptor 3 (NOTCH3), and prostaglandin E synthase 2 (mPGES2) confirmed the veracity and accuracy of LC-MS/MS method. We indicated that VIS modulates the expression of proteins connected with the regulation of lipogenesis and cholesterologenesis, and, in consequence, may be involved in the synthesis of steroid hormones, as well as prostaglandins' metabolism. Moreover, we revealed that VIS affects the abundance of protein associated with ovarian cell proliferation, differentiation, and apoptosis, as well as CL new vessel formation and tissue remodelling. Our results suggest important roles for VIS in the regulation of ovarian functions during the peri-implantation period.


Asunto(s)
Implantación del Embrión , Células Lúteas , Nicotinamida Fosforribosiltransferasa , Proteoma , Animales , Femenino , Porcinos , Nicotinamida Fosforribosiltransferasa/metabolismo , Proteoma/metabolismo , Células Lúteas/metabolismo , Embarazo , Proteómica/métodos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Subunidades beta de Inhibinas/metabolismo , Subunidades beta de Inhibinas/genética
2.
Sci Rep ; 14(1): 14780, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926439

RESUMEN

Previously, we demonstrated the expression of visfatin in porcine reproductive tissues and its effect on pituitary endocrinology. The objective of this study was to examine the visfatin effect on the secretion of steroid (P4, E2) and prostaglandin (PGE2, PGF2α), the mRNA and protein abundance of steroidogenic markers (STAR, CYP11A1, HSD3B, CYP19A1), prostaglandin receptors (PTGER2, PTGFR), insulin receptor (INSR), and activity of kinases (MAPK/ERK1/2, AKT, AMPK) in the porcine corpus luteum. We noted that the visfatin effect strongly depends on the phase of the estrous cycle: on days 2-3 and 14-16 it reduced P4, while on days 10-12 it stimulated P4. Visfatin increased secretion of E2 on days 2-3, PGE2 on days 2-3 and 10-12, reduced PGF2α release on days 14-16, as well as stimulated the expression of steroidogenic markers on days 10-12 of the estrous cycle. Moreover, visfatin elevated PTGER mRNA expression and decreased its protein level, while we noted the opposite changes for PTGFR. Additionally, visfatin activated ERK1/2, AKT, and AMPK, while reduced INSR phosphorylation. Interestingly, after inhibition of INSR and signalling pathways visfatin action was abolished. These findings suggest a regulatory role of visfatin in the porcine corpus luteum.


Asunto(s)
Cuerpo Lúteo , Nicotinamida Fosforribosiltransferasa , Animales , Cuerpo Lúteo/metabolismo , Cuerpo Lúteo/efectos de los fármacos , Femenino , Porcinos , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Ciclo Estral/metabolismo , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Progesterona/metabolismo , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Dinoprost/metabolismo
3.
BMC Genomics ; 25(1): 501, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773369

RESUMEN

BACKGROUND: The peri-implantation period is a critical time during pregnancy that mostly defines the overall litter size. Most authors agree that the highest percentage of embryo mortality occurs during this time. Despite the brevity of the peri-implantation period, it is the most dynamic part of pregnancy in which the sequential and uninterrupted course of several processes is essential to the animal's reproductive success. Also then, the maternal uterine tissues undergo an intensive remodelling process, and their energy demand dramatically increases. It is believed that apelin, a member of the adipokine family, is involved in the control of female reproductive functions in response to the current metabolic state. The verified herein hypothesis assumed the modulatory effect of apelin on the endometrial tissue transcriptome on days 15 to 16 of gestation (beginning of implantation). RESULTS: The analysis of data obtained during RNA-seq (Illumina HiSeq2500) of endometrial slices treated and untreated with apelin (n = 4 per group) revealed changes in the expression of 68 genes (39 up-regulated and 29 down-regulated in the presence of apelin), assigned to 240 gene ontology terms. We also revealed changes in the frequency of alternative splicing events (397 cases), as well as single nucleotide variants (1,818 cases) in the presence of the adipokine. The identified genes were associated, among others, with the composition of the extracellular matrix, apoptosis, and angiogenesis. CONCLUSIONS: The obtained results indicate a potential role of apelin in the regulation of uterine tissue remodelling during the peri-implantation period.


Asunto(s)
Implantación del Embrión , Endometrio , Transcriptoma , Animales , Femenino , Endometrio/metabolismo , Implantación del Embrión/genética , Embarazo , Porcinos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Perfilación de la Expresión Génica , Apelina/genética , Apelina/metabolismo , Empalme Alternativo
4.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397019

RESUMEN

Visfatin/NAMPT (VIS), the hormone exerting a pleiotropic effect, is also perceived as an important factor in the regulation of reproductive processes and pregnancy maintenance. Previous studies confirmed its involvement in the control of porcine pituitary and ovary function. In this study, we hypothesized that VIS may affect the global transcriptome of luteal cells and thus regulate the functioning of the ovaries. Illumina's NovaSeq 6000 RNA sequencing was performed to investigate the differentially expressed genes (DEGs) and long non-coding RNAs (DELs) as well as the occurrence of differential alternative splicing events (DASs) in the porcine luteal cells exposed to VIS (100 ng/mL) during the implantation period. The obtained results revealed 170 DEGs (99 up- and 71 downregulated) assigned to 45 functional annotations. Moreover, we revealed 40 DELs, of which 3 were known and 37 were described for the first time. We identified 169 DASs events. The obtained results confirmed a significant effect of VIS on the transcriptome and spliceosome of luteal cells, including the genes involved in the processes crucial for successful implantation and pregnancy maintenance as angiogenesis, steroidogenesis, inflammation, cell development, migration, and proliferation.


Asunto(s)
Células Lúteas , Nicotinamida Fosforribosiltransferasa , Animales , Femenino , Embarazo , Nicotinamida Fosforribosiltransferasa/genética , Ovario , Mantenimiento del Embarazo , Porcinos , Transcriptoma
5.
Animals (Basel) ; 14(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275812

RESUMEN

The pituitary gland is a key endocrine gland in all classes of vertebrates, including mammals. The pituitary gland is an important component of hypothalamus-pituitary-target organ hormonal regulatory axes and forms a functional link between the nervous system and the endocrine system. In response to hypothalamic stimuli, the pituitary gland secretes a number of hormones involved in the regulation of metabolism, stress reactions and environmental adaptation, growth and development, as well as reproductive processes and lactation. In turn, hormones secreted by target organs at the lowest levels of the hormonal regulatory axes regulate the functions of the pituitary gland in the process of hormonal feedback. The pituitary also responds to other peripheral signals, including adipose-tissue-derived factors. These substances are a broad group of peptides known as adipocytokines or adipokines that act as endocrine hormones mainly involved in energy homeostasis. Adipokines, including adiponectin, resistin, apelin, chemerin, visfatin, and irisin, are also expressed in the pituitary gland, and they influence the secretory functions of this gland. This review is an overview of the existing knowledge of the relationship between chosen adipose-derived factors and endocrine functions of the pituitary gland, with an emphasis on the pituitary control of reproductive processes.

6.
Cells ; 12(24)2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132154

RESUMEN

Visfatin (VIS), also known as nicotinamide phosphoribosyltransferase (NAMPT), is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). Recently, VIS has been also recognized as an adipokine. Our previous study revealed that VIS is produced in the anterior and posterior lobes of the porcine pituitary. Moreover, the expression and secretion of VIS are dependent on the phase of the estrous cycle and/or the stage of early pregnancy. Based on this, we hypothesized that VIS may regulate porcine pituitary function. This study was conducted on anterior pituitary (AP) glands harvested from pigs during specific phases of the estrous cycle. We have shown the modulatory effect of VIS in vitro on LH and FSH secretion by porcine AP cells (determined by ELISA). VIS was also found to stimulate cell proliferation (determined by Alamar Blue) without affecting apoptosis in these cells (determined using flow cytometry technique). Moreover, it was indicated that VIS may act in porcine AP cells through the INSR, AKT/PI3K, MAPK/ERK1/2, and AMPK signaling pathways (determined by ELISA or Western Blot). This observation was further supported by the finding that simultaneous treatment of cells with VIS and inhibitors of these pathways abolished the observed VIS impact on LH and FSH secretion (determined by ELISA). In addition, our research indicated that VIS affected the mentioned processes in a manner that was dependent on the dose of VIS and/or the phase of the estrous cycle. Thus, these findings suggest that VIS may regulate the functioning of the porcine pituitary gland during the estrous cycle.


Asunto(s)
Nicotinamida Fosforribosiltransferasa , Adenohipófisis , Femenino , Embarazo , Animales , Porcinos , Nicotinamida Fosforribosiltransferasa/metabolismo , Adenohipófisis/metabolismo , Hipófisis/metabolismo , Ciclo Estral/metabolismo , Hormona Folículo Estimulante
7.
Theriogenology ; 211: 28-39, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37562189

RESUMEN

Recent studies have demonstrated that visfatin participates in the regulation of female reproduction. Due to the lack of data concerning the level of visfatin in the ovarian follicles of pigs, one of the most economically important livestock species, the aim of this study was to investigate the expression and localisation of visfatin and the follicular fluid concentration in the ovarian follicles of prepubertal and mature gilts. We also aimed to examine the in vitro effects of gonadotropins (LH, FSH), insulin, progesterone (P4), oestradiol (E2), prostaglandin E2 (PGE2) and F2α (PGF2α) on visfatin levels. In the present study, we have demonstrated that visfatin expression is dependent on the maturity of the animals and the stage of ovarian follicle development. Visfatin signal was detected in individual follicular compartments from primordial to antral follicles and even in atretic follicles. We have shown that the expression of visfatin in granulosa cells was higher than in theca cells. The level of visfatin is upregulated by LH, FSH, E2, and P4 and downregulated by insulin, while prostaglandins have modulatory effects, dependent on the dose and type of ovarian follicular cells. To summarise, our research has shown that visfatin is widely expressed in the ovarian follicles of prepubertal and mature pigs, and its expression is regulated by gonadotropins, insulin, steroids, and prostaglandins, suggesting that visfatin appears to be an important intra-ovarian factor that could regulate porcine ovarian follicular function.


Asunto(s)
Insulina , Prostaglandinas , Femenino , Porcinos , Animales , Prostaglandinas/farmacología , Prostaglandinas/metabolismo , Insulina/farmacología , Insulina/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Folículo Ovárico/fisiología , Células de la Granulosa/metabolismo , Esteroides/metabolismo , Gonadotropinas/farmacología , Progesterona/farmacología , Progesterona/metabolismo , Estradiol/farmacología , Dinoprostona/metabolismo , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Sus scrofa
8.
Anim Reprod Sci ; 250: 107212, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36913896

RESUMEN

Visfatin/NAMPT creates a hormonal link between energy metabolism and female reproduction. A recent study documented visfatin expression in the ovary and its action on follicular cells; however, the expression of visfatin in luteal cells is still unknown. The aim of this study, therefore, was to investigate the transcript and protein expression of visfatin as well as its immunolocalization in the corpus luteum (CL) and to examine the involvement of extracellular signal-regulated kinases (ERK1/2) in the regulation of visfatin level in response to LH, insulin, progesterone (P4), prostaglandin E2 (PGE2) and F2α (PGF2α). Corpora lutea were harvested from gilts on days 2-3, 10-12 and 14-16 of the estrous cycle and on days 10-11, 12-13, 15-16 and 27-28 of pregnancy. The current study demonstrated that visfatin expression depends on hormonal status related to the phase of the estrous cycle or early pregnancy. Visfatin was immunolocalized to the cytoplasm of small and large luteal cells. Moreover, visfatin protein abundance was increased by P4, and decreased by both prostaglandins, while LH and insulin have modulatory effects, depending on the phase of the cycle. Interestingly, LH, P4 and PGE2 effects were abolished in response to the inhibition of ERK1/2 kinase. Thus, this study demonstrated that expression of visfatin in the porcine CL is determined by the endocrine status related to the estrous cycle and early pregnancy and by the action of LH, insulin, P4 and prostaglandins via activation of the ERK1/2 pathway.


Asunto(s)
Insulinas , Nicotinamida Fosforribosiltransferasa , Embarazo , Femenino , Porcinos , Animales , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/farmacología , Cuerpo Lúteo/fisiología , Progesterona/metabolismo , Ciclo Estral/fisiología , Prostaglandinas/metabolismo , Dinoprostona/metabolismo , Insulinas/metabolismo , Insulinas/farmacología , Dinoprost/farmacología , Dinoprost/metabolismo
9.
Biol Reprod ; 107(2): 557-573, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35349661

RESUMEN

It is well known that the body's metabolism and reproduction are closely related. Chemerin (CHEM) is one of many biologically active proteins secreted by the adipose tissue involved in the regulation of the energy homeostasis of the organism. In the present study, RNA-sequencing was performed to investigate the differentially expressed genes (DEGs), long non-coding RNAs (lncRNAs), and alternatively spliced (AS) transcripts in the cultured porcine endometrium exposed to chemerin for 24 hours (CHEM; 400 ng/mL) collected during the implantation period (15-16 days of gestation). High-throughput sequencing of transcriptomes was performed on the Illumina NovaSeq 6000 platform (Illumina, USA). In the current study, among all 130 DEGs, 58 were upregulated and 72 were downregulated in the CHEM-treated group. DEGs were assigned to 73 functional annotations. Twelve identified lncRNAs indicated a difference in the expression profile after CHEM administration. Additionally, we detected 386 differentially AS events encompassed 274 protein-coding genes and 2 lncRNAs. All AS events were divided into five alternative splicing types: alternative 3' splice site (A3SS), 5' splice site (A5SS), mutually exclusive exons (MXE), retention intron (RI), and skipping exon (SE). Within all AS events, we identified 42 A3SS, 43 A5SS, 53 MXE, 9 RI, and 239 SE. In summary, CHEM affects the transcriptomic profile of the porcine endometrium, controlling the expression of numerous genes, including those involved in the cell migration and adhesion, angiogenesis, inflammation, and steroidogenesis. It can be assumed that CHEM may be an important factor for a proper course of gestation and embryo development.


Asunto(s)
ARN Largo no Codificante , Transcriptoma , Animales , Implantación del Embrión/genética , Endometrio/metabolismo , Femenino , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN , Porcinos
10.
Anim Reprod Sci ; 237: 106910, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34974394

RESUMEN

In this study, aims were to evaluate orexin A (OXA) effects on mRNA abundance of important enzymes involved in prostaglandin production, such as cyclooxygenase 2 (PTGS2), microsomal PGE2 synthase-1 (PTGES), PGF2α synthase (PGFS) and carbonyl reductase 1 (CBR1), as well as prostaglandin E2 (PGE2) and F2α (PGF2α) culture medium concentrations for endometrial and myometrial explants. Tissues were collected from gilts during specific phases of the estrogenic cycle or early gestational period. There were greater concentrations of PGE2 with OXA treatments of endometrial tissues collected on days 12-13 and 27-28, as well as PGF2α on days 10-11 of the gestational period. The PGF2α concentrations were less in tissues collected on days 27-28 of the gestational period. The OXA treatments resulted in lesser concentrations of PGE2 from myometrial tissues collected on days 10-11 and greater PGF2α on days 10-11 of the gestational period and 10-11 of the estrogenic cycle. Effects of OXA may occur due to actions at PTGS2, PTGES, PGFS and CBR1 genes because mRNA abundances for proteins encoded by these genes were affected by OXA. Results indicate there is an OXA effect on mRNA abundances and prostaglandin culture medium concentrations of uterine tissue collected at different stages of the gestational period or estrogenic cycle using different doses of OXA. It, therefore, is concluded OXA may affect de novo synthesis and secretion of PGE2 and PGF2α in the uterus of pigs.


Asunto(s)
Carbonil Reductasa (NADPH) , Dinoprost , Animales , Carbonil Reductasa (NADPH)/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dinoprost/metabolismo , Dinoprost/farmacología , Dinoprostona/metabolismo , Endometrio/metabolismo , Femenino , Orexinas/farmacología , Embarazo , Prostaglandinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos , Útero/metabolismo
11.
Sci Rep ; 11(1): 8698, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888798

RESUMEN

Visfatin appears to be an energy sensor involved in the regulation of female fertility, which creates a hormonal link integrating the control of energy homeostasis and reproduction. This study evaluates the expression levels of visfatin gene and protein in selected areas of the porcine hypothalamus responsible for gonadotropin-releasing hormone synthesis: the mediobasal hypothalamus (MBH) and preoptic area (POA), and visfatin concentrations in the blood plasma. The tissue samples were harvested from gilts on days 2-3, 10-12, 14-16, and 17-19 of the estrous cycle, and on days 10-11, 12-13, 15-16, 27-28 of pregnancy. Visfatin was localized in the cytoplasm and nucleus of cells creating both studied hypothalamic structures. The study demonstrated that visfatin gene and protein expression in MBH and POA depends on hormonal status related to the phase of the estrous cycle or early pregnancy. Blood plasma concentrations of visfatin during the estrous cycle were higher on days 2-3 in relation to other studied phases of the cycle, while during early pregnancy, the highest visfatin contents were observed on days 12-13. This study demonstrated visfatin expression in the porcine hypothalamus and its dependence on the hormonal milieu related to the estrous cycle and early pregnancy.


Asunto(s)
Estro , Hipotálamo/metabolismo , Nicotinamida Fosforribosiltransferasa/sangre , Preñez/sangre , Animales , Femenino , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Embarazo
12.
Reprod Domest Anim ; 56(2): 239-253, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32402144

RESUMEN

This study determined the effect of orexin B (OXB) on the porcine endometrial transcriptome during the embryo attachment phase. Microarray analyses of gene ontology (GO), biological pathways, networks and differentially expressed genes (DEG) were performed. Orexin B influenced the expression of 887 genes (fold change > 1.2; p < .05): 620 genes were up-regulated, and 267 were down-regulated. The analysis of the relationship between DEG revealed that OXB interacts with genes linked with processes such as cell hormone binding, regulation of hormone levels, lipid transport, steroid metabolic processes, the apoptotic signalling pathway and the acute inflammatory response, which are pivotal for reproductive success. Orexin B played a bivalent role in the early-pregnant uterus by limiting the pregnancy outcome, promoting embryo development, suppressing the immune system and, consequently, preventing embryo rejection. These findings suggest that OXB could be responsible for the proper course of gestation by adapting litter size to the metabolic status of the maternal organism.


Asunto(s)
Endometrio/metabolismo , Orexinas/farmacología , Transcriptoma/efectos de los fármacos , Animales , Células Cultivadas , Implantación del Embrión/efectos de los fármacos , Implantación del Embrión/genética , Femenino , Embarazo , Transducción de Señal , Sus scrofa
13.
Theriogenology ; 156: 205-213, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32755720

RESUMEN

This study aimed to determine the effect of orexin B (OXB) on the global expression pattern and the relationships among differentially expressed genes (DE-genes) in the transcriptome of myometrial explants during the early implantation period in the pig (day 15 of pregnancy). The changes in the transcriptome profile of the porcine myometrium were investigated using the Porcine (V2) Two-colour Gene Expression Microarray, 4 × 44. An analysis of the data from the microarray experiment revealed that 1540 DE-genes were affected by OXB, of which 1135 exhibited fold changes (FC) greater than 1.2 (P < 0.05). Among these, 576 genes were up-regulated and 559 genes were down-regulated. Among the affected biological processes in the myometrial tissue, 76 were enhanced and 31 were suppressed. Furthermore, the differential expression of nine genes, related to the regulation of reproductive functions and metabolic homeostasis, was confirmed by quantitative RT-PCR. A functional analysis of the relationships between DE-genes indicated that OXB interacts with the genes involved in the processes such as the inflammatory response, the response to interleukin-6, cytokine receptor activity, the regulation of cell activation, growth factor receptor binding, lipid modification and the steroid metabolic process. An analysis of DE-genes and their functional relationships suggests that OXB could be involved in the mechanisms such as the regulation of cell proliferation and development, inhibition of contractility, regulation of programmed cell death, and the development of blood vessels, all of which facilitate implantation.


Asunto(s)
Miometrio , Transcriptoma , Animales , Implantación del Embrión , Femenino , Regulación de la Expresión Génica , Orexinas , Embarazo , Porcinos/genética
14.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717877

RESUMEN

Chemerin belongs to the group of adipocyte-derived hormones known as adipokines, which are responsible mainly for the control of energy homeostasis. Adipokine exerts its influence through three receptors: Chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and C-C motif chemokine receptor-like 2 (CCRL2). A growing body of evidence indicates that chemerin participates in the regulation of the female reproductive system. According to the literature, the expression of chemerin and its receptors in reproductive structures depends on the local hormonal milieu. The aim of this study was to investigate the in vitro effect of prostaglandins E2 (PGE2) and F2α (PGF2α) on chemerin and chemerin receptor (chemerin system) mRNAs (qPCR) and proteins (ELISA, Western blotting) in endometrial tissue explants collected from early-pregnant gilts. Both PGE2 and PGF2α significantly influenced the expression of the chemerin gene, hormone secretion, and the expression of chemerin receptor genes and proteins. The influence of both prostaglandins on the expression of the chemerin system varied between different stages of gestation. This is the first study to describe the modulatory effect of PGE2 and PGF2α on the expression of the chemerin system in the porcine uterus during early gestation.


Asunto(s)
Quimiocinas/metabolismo , Dinoprost/metabolismo , Dinoprostona/metabolismo , Endometrio/metabolismo , Embarazo/fisiología , Porcinos/metabolismo , Animales , Femenino , Receptores de Quimiocina/metabolismo
15.
Theriogenology ; 143: 157-167, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31875568

RESUMEN

In pigs, early gestation is the most critical period deciding about the reproduction success, and it depends on many processes, involving a significant number of genes and their products. Myometrium was found to be an important source of factors pivotal for a proper course of gestation. The aim of the study was to determine the effect of orexin A (OXA) on the porcine transcriptome, and the determination of relationships among differentially expressed genes (DEG) in the porcine myometrium during implantation using microarray technology. The analyses of gene ontology (GO), DEG assays, biological pathways and networks were performed. OXA affected the expression of 461 genes with fold-change values greater than 1.2 (p < 0.05). The expression of 260 genes were up-regulated and 201 down-regulated in the OXA-treated myometrium. Twelve genes were selected for qPCR validation of differential expression based on their known role in angiogenesis, immune processes, steroid hormone signaling and prostaglandins synthesis. The analysis of relationship between DEG indicated that OXA interacts with genes involved in the inflammatory response, cytokine binding, cytokine activity, interleukin production, leukocyte migration, angiogenesis and embryonic hemopoiesis. The presented results suggest that OXA may play a key role in ensuring optimal conditions for implanting embryos.


Asunto(s)
Miometrio/efectos de los fármacos , Miometrio/metabolismo , Orexinas/farmacología , Porcinos/fisiología , Transcriptoma/efectos de los fármacos , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
16.
Int J Mol Sci ; 20(16)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31404950

RESUMEN

Chemerin (CHEM) may act as an important link integrating energy homeostasis and reproductive functions of females, and its actions are mediated by three receptors: chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and C-C motif chemokine receptor-like 2 (CCRL2). The aim of the current study was to compare the expression of CHEM and its receptor (CHEM system) mRNAs (quantitative real-time PCR) and proteins (Western blotting and fluorescent immunohistochemistry) in the selected areas of the porcine hypothalamus responsible for gonadotropin-releasing hormone production and secretion: the mediobasal hypothalamus, preoptic area and stalk median eminence during the oestrous cycle and early pregnancy. Moreover, plasma CHEM concentrations were determined using ELISA. The expression of CHEM system has been demonstrated in the porcine hypothalamus throughout the luteal phase and follicular phase of the oestrous cycle, and during early pregnancy from days 10 to 28. Plasma CHEM levels and concentrations of transcripts and proteins of CHEM system components in the hypothalamus fluctuated throughout pregnancy and the oestrous cycle. Our study was the first experiment to demonstrate the presence of CHEM system mRNAs and proteins in the porcine hypothalamus and the correlations between the expression levels and physiological hormonal milieu related to the oestrous cycle and early pregnancy.


Asunto(s)
Quimiocinas/análisis , Ciclo Estral , Hipotálamo/metabolismo , Receptores de Quimiocina/análisis , Animales , Quimiocinas/sangre , Quimiocinas/genética , Femenino , Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/química , Embarazo , Receptores de Quimiocina/genética , Porcinos
17.
Int J Mol Sci ; 20(6)2019 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-30884816

RESUMEN

Comprehensive understanding of the regulatory mechanism of the implantation process in pigs is crucial for reproductive success. The endometrium plays an important role in regulating the establishment and maintenance of gestation. The goal of the current study was to determine the effect of adiponectin on the global expression pattern of genes and relationships among differentially expressed genes (DE-genes) in the porcine endometrium during implantation using microarrays. Diverse transcriptome analyses including gene ontology (GO), biological pathway, networks, and DE-gene analyses were performed. Adiponectin altered the expression of 1286 genes with fold-change (FC) values greater than 1.2 (p < 0.05). The expression of 560 genes were upregulated and 726 downregulated in the endometrium treated with adiponectin. Thirteen genes were selected for real-time PCR validation of differential expression based on a known role in metabolism, steroid and prostaglandin synthesis, interleukin and growth factor action, and embryo implantation. Functional analysis of the relationship between DE-genes indicated that adiponectin interacts with genes that are involved in the processes of cell proliferation, programmed cell death, steroid and prostaglandin synthesis/metabolism, cytokine production, and cell adhesion that are critical for reproductive success. The presented results suggest that adiponectin signalling may play a key role in the implantation of pig.


Asunto(s)
Adiponectina/administración & dosificación , Endometrio/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Proteínas/química , Transcriptoma/genética , Adiponectina/genética , Animales , Proliferación Celular/efectos de los fármacos , Endometrio/química , Endometrio/crecimiento & desarrollo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo/genética , Embarazo/fisiología , Pliegue de Proteína/efectos de los fármacos , Reproducción/genética , Porcinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...