Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
ERJ Open Res ; 9(2)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36960350

RESUMEN

Background: Recovery trajectories from coronavirus disease 2019 (COVID-19) call for longitudinal investigation. We aimed to characterise the kinetics and status of clinical, cardiopulmonary and mental health recovery up to 1 year following COVID-19. Methods: Clinical evaluation, lung function testing (LFT), chest computed tomography (CT) and transthoracic echocardiography were conducted at 2, 3, 6 and 12 months after disease onset. Submaximal exercise capacity, mental health status and quality of life were assessed at 12 months. Recovery kinetics and patterns were investigated by mixed-effect logistic modelling, correlation and clustering analyses. Risk of persistent symptoms and cardiopulmonary abnormalities at the 1-year follow-up were modelled by logistic regression. Findings: Out of 145 CovILD study participants, 108 (74.5%) completed the 1-year follow-up (median age 56.5 years; 59.3% male; 24% intensive care unit patients). Comorbidities were present in 75% (n=81). Key outcome measures plateaued after 180 days. At 12 months, persistent symptoms were found in 65% of participants; 33% suffered from LFT impairment; 51% showed CT abnormalities; and 63% had low-grade diastolic dysfunction. Main risk factors for cardiopulmonary impairment included pro-inflammatory and immunological biomarkers at early visits. In addition, we deciphered three recovery clusters separating almost complete recovery from patients with post-acute inflammatory profile and an enrichment in cardiopulmonary residuals from a female-dominated post-COVID-19 syndrome with reduced mental health status. Conclusion: 1 year after COVID-19, the burden of persistent symptoms, impaired lung function, radiological abnormalities remains high in our study population. Yet, three recovery trajectories are emerging, ranging from almost complete recovery to post-COVID-19 syndrome with impaired mental health.

2.
J Psychosom Res ; 169: 111234, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965396

RESUMEN

OBJECTIVE: Subjective illness perception (IP) can differ from physician's clinical assessment results. Herein, we explored patient's IP during coronavirus disease 2019 (COVID-19) recovery. METHODS: Participants of the prospective observation CovILD study (ClinicalTrials.gov: NCT04416100) with persistent somatic symptoms or cardiopulmonary findings one year after COVID-19 were analyzed (n = 74). Explanatory variables included demographic and comorbidity, COVID-19 course and one-year follow-up data of persistent somatic symptoms, physical performance, lung function testing, chest computed tomography and trans-thoracic echocardiography. Factors affecting IP (Brief Illness Perception Questionnaire) one year after COVID-19 were identified by regularized modeling and unsupervised clustering. RESULTS: In modeling, 33% of overall IP variance (R2) was attributed to fatigue intensity, reduced physical performance and persistent somatic symptom count. Overall IP was largely independent of lung and heart findings revealed by imaging and function testing. In clustering, persistent somatic symptom count (Kruskal-Wallis test: η2 = 0.31, p < .001), fatigue (η2 = 0.34, p < .001), diminished physical performance (χ2 test, Cramer V effect size statistic: V = 0.51, p < .001), dyspnea (V = 0.37, p = .006), hair loss (V = 0.57, p < .001) and sleep problems (V = 0.36, p = .008) were strongly associated with the concern, emotional representation, complaints, disease timeline and consequences IP dimensions. CONCLUSION: Persistent somatic symptoms rather than abnormalities in cardiopulmonary testing influence IP one year after COVID-19. Modifying IP represents a promising innovative approach to treatment of post-COVID-19 condition. Besides COVID-19 severity, individual IP should guide rehabilitation and psychological therapy decisions.


Asunto(s)
COVID-19 , Síntomas sin Explicación Médica , Humanos , Estudios Prospectivos , Estudios Transversales , Percepción , Fatiga/etiología
3.
Metabolites ; 12(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35736479

RESUMEN

Coronavirus disease 2019 (COVID-19) is frequently associated with iron dyshomeostasis. The latter is related to acute disease severity and COVID-19 convalescence. We herein describe iron dyshomeostasis at COVID-19 follow-up and its association with long-term pulmonary and symptomatic recovery. The prospective, multicentre, observational cohort study "Development of Interstitial Lung Disease (ILD) in Patients With Severe SARS-CoV-2 Infection (CovILD)" encompasses serial extensive clinical, laboratory, functional and imaging evaluations at 60, 100, 180 and 360 days after COVID-19 onset. We included 108 individuals with mild-to-critical acute COVID-19, whereas 75% presented with severe acute disease. At 60 days post-COVID-19 follow-up, hyperferritinaemia (35% of patients), iron deficiency (24% of the cohort) and anaemia (9% of the patients) were frequently found. Anaemia of inflammation (AI) was the predominant feature at early post-acute follow-up, whereas the anaemia phenotype shifted towards iron deficiency anaemia (IDA) and combinations of IDA and AI until the 360 days follow-up. The prevalence of anaemia significantly decreased over time, but iron dyshomeostasis remained a frequent finding throughout the study. Neither iron dyshomeostasis nor anaemia were related to persisting structural lung impairment, but both were associated with impaired stress resilience at long-term COVID-19 follow-up. To conclude, iron dyshomeostasis and anaemia are frequent findings after COVID-19 and may contribute to its long-term symptomatic outcome.

4.
Sci Rep ; 12(1): 3677, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256646

RESUMEN

The CovILD study is a prospective, multicenter, observational cohort study to systematically follow up patients after coronavirus disease-2019 (COVID-19). We extensively evaluated 145 COVID-19 patients at 3 follow-up visits scheduled for 60, 100, and 180 days after initial confirmed diagnosis based on typical symptoms and a positive reverse transcription-polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We employed comprehensive pulmonary function and laboratory tests, including serum concentrations of IgG against the viral spike (S) glycoprotein, and compared the results to clinical data and chest computed tomography (CT). We found that at the 60 day follow-up, 131 of 145 (90.3%) participants displayed S-specific serum IgG levels above the cut-off threshold. Notably, the highly elevated IgG levels against S glycoprotein positively correlated with biomarkers of immune activation and negatively correlated with pulmonary function and the extent of pulmonary CT abnormalities. Based on the association between serum S glycoprotein-specific IgG and clinical outcome, we generated an S-specific IgG-based recovery score that, when applied in the early convalescent phase, accurately predicted delayed pulmonary recovery after COVID-19. Therefore, we propose that S-specific IgG levels serve as a useful immunological surrogate marker for identifying at-risk individuals with persistent pulmonary injury who may require intensive follow-up care after COVID-19.


Asunto(s)
COVID-19/inmunología , Inmunoglobulina G/inmunología , Pulmón/patología , Glicoproteína de la Espiga del Coronavirus/inmunología , COVID-19/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Estudios Prospectivos , Pruebas de Función Respiratoria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Elife ; 112022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35131031

RESUMEN

Background: The optimal procedures to prevent, identify, monitor, and treat long-term pulmonary sequelae of COVID-19 are elusive. Here, we characterized the kinetics of respiratory and symptom recovery following COVID-19. Methods: We conducted a longitudinal, multicenter observational study in ambulatory and hospitalized COVID-19 patients recruited in early 2020 (n = 145). Pulmonary computed tomography (CT) and lung function (LF) readouts, symptom prevalence, and clinical and laboratory parameters were collected during acute COVID-19 and at 60, 100, and 180 days follow-up visits. Recovery kinetics and risk factors were investigated by logistic regression. Classification of clinical features and participants was accomplished by unsupervised and semi-supervised multiparameter clustering and machine learning. Results: At the 6-month follow-up, 49% of participants reported persistent symptoms. The frequency of structural lung CT abnormalities ranged from 18% in the mild outpatient cases to 76% in the intensive care unit (ICU) convalescents. Prevalence of impaired LF ranged from 14% in the mild outpatient cases to 50% in the ICU survivors. Incomplete radiological lung recovery was associated with increased anti-S1/S2 antibody titer, IL-6, and CRP levels at the early follow-up. We demonstrated that the risk of perturbed pulmonary recovery could be robustly estimated at early follow-up by clustering and machine learning classifiers employing solely non-CT and non-LF parameters. Conclusions: The severity of acute COVID-19 and protracted systemic inflammation is strongly linked to persistent structural and functional lung abnormality. Automated screening of multiparameter health record data may assist in the prediction of incomplete pulmonary recovery and optimize COVID-19 follow-up management. Funding: The State of Tyrol (GZ 71934), Boehringer Ingelheim/Investigator initiated study (IIS 1199-0424). Clinical trial number: ClinicalTrials.gov: NCT04416100.


Asunto(s)
COVID-19/terapia , Enfermedades Pulmonares/epidemiología , Enfermedades Pulmonares/fisiopatología , Adulto , Anciano , COVID-19/epidemiología , COVID-19/rehabilitación , Femenino , Estudios de Seguimiento , Humanos , Unidades de Cuidados Intensivos , Modelos Logísticos , Estudios Longitudinales , Enfermedades Pulmonares/diagnóstico , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , Factores de Riesgo , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos
6.
Antibiotics (Basel) ; 10(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34680781

RESUMEN

The calcium channel blocker nifedipine induces cellular iron export, thereby limiting the availability of the essential nutrient iron for intracellular pathogens, resulting in bacteriostatic activity. To study if nifedipine may exert a synergistic anti-microbial activity when combined with antibiotics, we used the mouse macrophage cell line RAW267.4, infected with the intracellular bacterium Salmonella Typhimurium, and exposed the cells to varying concentrations of nifedipine and/or ampicillin, azithromycin and ceftriaxone. We observed a significant additive effect of nifedipine in combination with various antibiotics, which was not observed when using Salmonella, with defects in iron uptake. Of interest, increasing intracellular iron levels increased the bacterial resistance to treatment with antibiotics or nifedipine or their combination. We further showed that nifedipine increases the expression of the siderophore-binding peptide lipocalin-2 and promotes iron storage within ferritin, where the metal is less accessible for bacteria. Our data provide evidence for an additive effect of nifedipine with conventional antibiotics against Salmonella, which is partly linked to reduced bacterial access to iron.

7.
Open Forum Infect Dis ; 8(1): ofaa521, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33442554

RESUMEN

This study evaluates the predictive value of circulating inflammatory markers, especially neopterin, in patients with coronavirus disease 2019 (COVID-19). Within this retrospective analysis of 115 hospitalized COVID-19 patients, elevated neopterin levels upon admission were significantly associated with disease severity, risk for intensive care unit admission, need for mechanical ventilation, and death. Therefore, neopterin is a reliable predictive marker in patients with COVID-19 and may help to improve the clinical management of patients.

8.
Eur Respir J ; 57(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33303539

RESUMEN

BACKGROUND: After the 2002/2003 severe acute respiratory syndrome outbreak, 30% of survivors exhibited persisting structural pulmonary abnormalities. The long-term pulmonary sequelae of coronavirus disease 2019 (COVID-19) are yet unknown, and comprehensive clinical follow-up data are lacking. METHODS: In this prospective, multicentre, observational study, we systematically evaluated the cardiopulmonary damage in subjects recovering from COVID-19 at 60 and 100 days after confirmed diagnosis. We conducted a detailed questionnaire, clinical examination, laboratory testing, lung function analysis, echocardiography and thoracic low-dose computed tomography (CT). RESULTS: Data from 145 COVID-19 patients were evaluated, and 41% of all subjects exhibited persistent symptoms 100 days after COVID-19 onset, with dyspnoea being most frequent (36%). Accordingly, patients still displayed an impaired lung function, with a reduced diffusing capacity in 21% of the cohort being the most prominent finding. Cardiac impairment, including a reduced left ventricular function or signs of pulmonary hypertension, was only present in a minority of subjects. CT scans unveiled persisting lung pathologies in 63% of patients, mainly consisting of bilateral ground-glass opacities and/or reticulation in the lower lung lobes, without radiological signs of pulmonary fibrosis. Sequential follow-up evaluations at 60 and 100 days after COVID-19 onset demonstrated a vast improvement of symptoms and CT abnormalities over time. CONCLUSION: A relevant percentage of post-COVID-19 patients presented with persisting symptoms and lung function impairment along with radiological pulmonary abnormalities >100 days after the diagnosis of COVID-19. However, our results indicate a significant improvement in symptoms and cardiopulmonary status over time.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , Humanos , Pulmón/diagnóstico por imagen , Estudios Prospectivos , SARS-CoV-2
9.
Respir Res ; 21(1): 276, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087116

RESUMEN

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is frequently associated with hyperinflammation and hyperferritinemia. The latter is related to increased mortality in COVID-19. Still, it is not clear if iron dysmetabolism is mechanistically linked to COVID-19 pathobiology. METHODS: We herein present data from the ongoing prospective, multicentre, observational CovILD cohort study (ClinicalTrials.gov number, NCT04416100), which systematically follows up patients after COVID-19. 109 participants were evaluated 60 days after onset of first COVID-19 symptoms including clinical examination, chest computed tomography and laboratory testing. RESULTS: We investigated subjects with mild to critical COVID-19, of which the majority received hospital treatment. 60 days after disease onset, 30% of subjects still presented with iron deficiency and 9% had anemia, mostly categorized as anemia of inflammation. Anemic patients had increased levels of inflammation markers such as interleukin-6 and C-reactive protein and survived a more severe course of COVID-19. Hyperferritinemia was still present in 38% of all individuals and was more frequent in subjects with preceding severe or critical COVID-19. Analysis of the mRNA expression of peripheral blood mononuclear cells demonstrated a correlation of increased ferritin and cytokine mRNA expression in these patients. Finally, persisting hyperferritinemia was significantly associated with severe lung pathologies in computed tomography scans and a decreased performance status as compared to patients without hyperferritinemia. DISCUSSION: Alterations of iron homeostasis can persist for at least two months after the onset of COVID-19 and are closely associated with non-resolving lung pathologies and impaired physical performance. Determination of serum iron parameters may thus be a easy to access measure to monitor the resolution of COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov number: NCT04416100.


Asunto(s)
Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/metabolismo , Homeostasis , Hierro/metabolismo , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Neumonía Viral/complicaciones , Neumonía Viral/metabolismo , Adulto , Anciano , Anemia/etiología , Proteína C-Reactiva/análisis , COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/fisiopatología , Femenino , Ferritinas/sangre , Estudios de Seguimiento , Humanos , Inflamación/etiología , Inflamación/metabolismo , Interleucina-6/sangre , Enfermedades Pulmonares/fisiopatología , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Pandemias , Neumonía Viral/fisiopatología , Estudios Prospectivos , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA