Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8009): 741-745, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658686

RESUMEN

Extensive efforts have been undertaken to combine superconductivity and the quantum Hall effect so that Cooper-pair transport between superconducting electrodes in Josephson junctions is mediated by one-dimensional edge states1-6. This interest has been motivated by prospects of finding new physics, including topologically protected quasiparticles7-9, but also extends into metrology and device applications10-13. So far it has proven challenging to achieve detectable supercurrents through quantum Hall conductors2,3,6. Here we show that domain walls in minimally twisted bilayer graphene14-18 support exceptionally robust proximity superconductivity in the quantum Hall regime, allowing Josephson junctions to operate in fields close to the upper critical field of superconducting electrodes. The critical current is found to be non-oscillatory and practically unchanging over the entire range of quantizing fields, with its value being limited by the quantum conductance of ballistic, strictly one-dimensional, electronic channels residing within the domain walls. The system described is unique in its ability to support Andreev bound states at quantizing fields and offers many interesting directions for further exploration.

2.
Nat Mater ; 20(12): 1615-1628, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33972762

RESUMEN

Isolating single molecules in the solid state has allowed fundamental experiments in basic and applied sciences. When cooled down to liquid helium temperature, certain molecules show transition lines that are tens of megahertz wide, limited by only the excited-state lifetime. The extreme flexibility in the synthesis of organic materials provides, at low costs, a wide palette of emission wavelengths and supporting matrices for such single chromophores. In the past few decades, their controlled coupling to photonic structures has led to an optimized interaction efficiency with light. Molecules can hence be operated as single-photon sources and as nonlinear elements with competitive performance in terms of coherence, scalability and compatibility with diverse integrated platforms. Moreover, they can be used as transducers for the optical read-out of fields and material properties, with the promise of single-quanta resolution in the sensing of charges and motion. We show that quantum emitters based on single molecules hold promise to play a key role in the development of quantum science and technologies.


Asunto(s)
Óptica y Fotónica , Fotones , Temperatura
3.
Nat Commun ; 8: 14311, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139766

RESUMEN

There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K-1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K-1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K-1, and the ability to resolve temperature variations down to 15 µK.

4.
Nat Commun ; 7: 12174, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27412308

RESUMEN

Finding alternative optoelectronic mechanisms that overcome the limitations of conventional semiconductor devices is paramount for detecting and harvesting low-energy photons. A highly promising approach is to drive a current from the thermal energy added to the free-electron bath as a result of light absorption. Successful implementation of this strategy requires a broadband absorber where carriers interact among themselves more strongly than with phonons, as well as energy-selective contacts to extract the excess electronic heat. Here we show that graphene-WSe2-graphene heterostructure devices offer this possibility through the photo-thermionic effect: the absorbed photon energy in graphene is efficiently transferred to the electron bath leading to a thermalized hot carrier distribution. Carriers with energy higher than the Schottky barrier between graphene and WSe2 can be emitted over the barrier, thus creating photocurrent. We experimentally demonstrate that the photo-thermionic effect enables detection of sub-bandgap photons, while being size-scalable, electrically tunable, broadband and ultrafast.

5.
Nat Nanotechnol ; 11(1): 42-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26436565

RESUMEN

Two-dimensional crystals such as graphene and transition-metal dichalcogenides demonstrate a range of unique and complementary optoelectronic properties. Assembling different two-dimensional materials in vertical heterostructures enables the combination of these properties in one device, thus creating multifunctional optoelectronic systems with superior performance. Here, we demonstrate that graphene/WSe2/graphene heterostructures ally the high photodetection efficiency of transition-metal dichalcogenides with a picosecond photoresponse comparable to that of graphene, thereby optimizing both speed and efficiency in a single photodetector. We follow the extraction of photoexcited carriers in these devices using time-resolved photocurrent measurements and demonstrate a photoresponse time as short as 5.5 ps, which we tune by applying a bias and by varying the transition-metal dichalcogenide layer thickness. Our study provides direct insight into the physical processes governing the detection speed and quantum efficiency of these van der Waals heterostuctures, such as out-of-plane carrier drift and recombination. The observation and understanding of ultrafast and efficient photodetection demonstrate the potential of hybrid transition-metal dichalcogenide-based heterostructures as a platform for future optoelectronic devices.

6.
J Phys Condens Matter ; 27(16): 164207, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25835338

RESUMEN

Photoexcitation of graphene leads to an interesting sequence of phenomena, some of which can be exploited in optoelectronic devices based on graphene. In particular, the efficient and ultrafast generation of an electron distribution with an elevated electron temperature and the concomitant generation of a photo-thermoelectric voltage at symmetry-breaking interfaces is of interest for photosensing and light harvesting. Here, we experimentally study the generated photocurrent at the graphene-metal interface, focusing on the time-resolved photocurrent, the effects of photon energy, Fermi energy and light polarization. We show that a single framework based on photo-thermoelectric photocurrent generation explains all experimental results.

7.
Nat Nanotechnol ; 10(5): 437-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25867941

RESUMEN

Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies have addressed the general operation of graphene-based photothermoelectric devices and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster timescale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 fs. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 fs laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity of between 500 and 1,500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.

8.
Nat Nanotechnol ; 9(10): 780-93, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25286273

RESUMEN

Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms. The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges. These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies. Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides.


Asunto(s)
Electrónica/instrumentación , Grafito/química , Nanoestructuras/química , Óptica y Fotónica/instrumentación , Diseño de Equipo , Luz , Semiconductores
9.
Nano Lett ; 14(11): 6374-81, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25343323

RESUMEN

The photoresponse of graphene at mid-infrared frequencies is of high technological interest and is governed by fundamentally different underlying physics than the photoresponse at visible frequencies, as the energy of the photons and substrate phonons involved have comparable energies. Here, we perform a spectrally resolved study of the graphene photoresponse for mid-infrared light by measuring spatially resolved photocurrent over a broad frequency range (1000-1600 cm(-1)). We unveil the different mechanisms that give rise to photocurrent generation in graphene on a polar substrate. In particular, we find an enhancement of the photoresponse when the light excites bulk or surface phonons of the SiO2 substrate. This work paves the way for the development of graphene-based mid-infrared thermal sensing technology.

10.
Nano Lett ; 14(10): 5839-45, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25247639

RESUMEN

For most optoelectronic applications of graphene, a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering, creating an elevated carrier temperature, and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy and fluence over a wide range. We find that sufficiently low fluence (≲4 µJ/cm(2)) in conjunction with sufficiently high Fermi energy (≳0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.

11.
Nano Lett ; 13(5): 2030-5, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23488979

RESUMEN

The near-field interaction between fluorescent emitters and graphene exhibits rich physics associated with local dipole-induced electromagnetic fields that are strongly enhanced due to the unique properties of graphene. Here, we measure emitter lifetimes as a function of emitter-graphene distance d, and find agreement with a universal scaling law, governed by the fine-structure constant. The observed energy transfer rate is in agreement with a 1/d(4) dependence that is characteristic of two-dimensional lossy media. The emitter decay rate is enhanced 90 times (energy transfer efficiency of ~99%) with respect to the decay in vacuum at distances d ≈ 5 nm. This high energy transfer rate is mainly due to the two-dimensionality and gapless character of the monatomic carbon layer. Graphene is thus shown to be an extraordinary energy sink, holding great potential for photodetection, energy harvesting, and nanophotonics.

12.
Phys Rev Lett ; 111(24): 247401, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24483697

RESUMEN

We show that it is possible to realize significant nonlinear optical interactions at the few photon level in graphene nanostructures. Our approach takes advantage of the electric field enhancement associated with the strong confinement of graphene plasmons and the large intrinsic nonlinearity of graphene. Such a system could provide a powerful platform for quantum nonlinear optical control of light. As an example, we consider an integrated optical device that exploits this large nonlinearity to realize a single photon switch.

13.
Phys Rev Lett ; 103(4): 046601, 2009 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-19659378

RESUMEN

We observe multiple stable states of nuclear polarization and nuclear self-tuning over a large range of fields in a double quantum dot under conditions of electron spin resonance. The observations can be understood within an elaborated theoretical rate equation model for the polarization in each of the dots, in the limit of strong driving. This model also captures unusual features of the data, such as fast switching and a "wrong" sign of polarization. The results reported enable applications of this polarization effect, including accurate manipulation and control of nuclear fields.

14.
Phys Rev Lett ; 100(23): 236802, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18643533

RESUMEN

We report a measurement of the spin-echo decay of a single electron spin confined in a semiconductor quantum dot. When we tip the spin in the transverse plane via a magnetic field burst, it dephases in 37 ns due to the Larmor precession around a random effective field from the nuclear spins in the host material. We reverse this dephasing to a large extent via a spin-echo pulse, and find a spin-echo decay time of about 0.5 micros at 70 mT. These results are in the range of theoretical predictions of the electron spin coherence time governed by the electron-nuclear dynamics.

15.
Science ; 318(5855): 1430-3, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17975030

RESUMEN

Manipulation of single spins is essential for spin-based quantum information processing. Electrical control instead of magnetic control is particularly appealing for this purpose, because electric fields are easy to generate locally on-chip. We experimentally realized coherent control of a single-electron spin in a quantum dot using an oscillating electric field generated by a local gate. The electric field induced coherent transitions (Rabi oscillations) between spin-up and spin-down with 90 degrees rotations as fast as approximately 55 nanoseconds. Our analysis indicated that the electrically induced spin transitions were mediated by the spin-orbit interaction. Taken together with the recently demonstrated coherent exchange of two neighboring spins, our results establish the feasibility of fully electrical manipulation of spin qubits.

16.
Phys Rev Lett ; 99(10): 106803, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17930403

RESUMEN

We study, both theoretically and experimentally, driven Rabi oscillations of a single electron spin coupled to a nuclear-spin bath. Because of the long correlation time of the bath, two unusual features are observed in the oscillations. The decay follows a power law, and the oscillations are shifted in phase by a universal value of approximately pi/4. These properties are well understood from a theoretical expression that we derive here in the static limit for the nuclear bath. This improved understanding of the coupled electron-nuclear system is important for future experiments using the electron spin as a qubit.

17.
Phys Rev Lett ; 98(12): 126601, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17501146

RESUMEN

We observe an experimental signature of the role of phonons in spin relaxation between triplet and singlet states in a two-electron quantum dot. Using both the external magnetic field and the electrostatic confinement potential, we change the singlet-triplet energy splitting from 1.3 meV to zero and observe that the spin relaxation time depends nonmonotonously on the energy splitting. A simple theoretical model is derived to capture the underlying physical mechanism. The present experiment confirms that spin-flip energy is dissipated in the phonon bath.

18.
Nature ; 442(7104): 766-71, 2006 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16915280

RESUMEN

The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments towards a scalable spin-based quantum computer. In combination with the recently demonstrated controlled exchange gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations. Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits.

19.
Phys Rev Lett ; 94(19): 196802, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-16090196

RESUMEN

We present a method for reading out the spin state of electrons in a quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. We experimentally demonstrate the method by performing readout of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on the in-plane magnetic field.

20.
Science ; 309(5739): 1346-50, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-16037418

RESUMEN

We observed mixing between two-electron singlet and triplet states in a double quantum dot, caused by interactions with nuclear spins in the host semiconductor. This mixing was suppressed when we applied a small magnetic field or increased the interdot tunnel coupling and thereby the singlet-triplet splitting. Electron transport involving transitions between triplets and singlets in turn polarized the nuclei, resulting in marked bistabilities. We extract from the fluctuating nuclear field a limitation on the time-averaged spin coherence time T2* of 25 nanoseconds. Control of the electron-nuclear interaction will therefore be crucial for the coherent manipulation of individual electron spins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...