RESUMEN
The early detection of spoilage microorganisms and food pathogens is of paramount importance in food production systems. We propose a novel strategy for the early detection of food production defects, harnessing the product microbiome. We hypothesize that by establishing microbiome datasets of proper and defective batches, indicator bacteria signaling production errors can be identified and targeted for rapid quantification as part of routine practice. Using the production process of pastrami as a model, we characterized its live microbiome profiles throughout the production stages and in the final product, using propidium monoazide treatment followed by 16S rDNA sequencing. Pastrami demonstrated product-specific and consistent microbiome profiles predominated by Serratia and Vibrionimonas, with distinct microbial signatures across the production stages. Based on the established microbiome dataset, we were able to detect shifts in the microbiome profile of a defective batch produced under lactate deficiency. The most substantial changes were observed as increased relative abundances of Vibrio and Lactobacillus, which were subsequently defined as potential lactate-deficiency indicators. PMA-qPCR efficiently detected increased levels of these species, thus proving useful in rapidly pinpointing the production defect. This approach offers the possibility of the in-house detection of defective production events with same-day results, promoting safer food production systems.
RESUMEN
Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it as a significant and reliable source of irrigation water. However, years of research indicate that if not managed adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of emerging concern and pathogens). The work then presents solutions to address these challenges, including technological and agronomic management-based solutions as well as source control policies. The concluding section presents suggestions for the path forward, emphasizing the importance of improving links between research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to mitigate risks, and facilitate more sustainable use of TWW for food production in the future.
RESUMEN
Acute Respiratory Distress Syndrome (ARDS), associated with Covid-19 infections, is characterized by diffuse lung damage, inflammation and alveolar collapse that impairs gas exchange, leading to hypoxemia and patient' mortality rates above 40%. Here, we describe the development and assessment of 100-nm liposomes that are tailored for pulmonary delivery for treating ARDS, as a model for lung diseases. The liposomal lipid composition (primarily DPPC) was optimized to mimic the lung surfactant composition, and the drug loading process of both methylprednisolone (MPS), a steroid, and N-acetyl cysteine (NAC), a mucolytic agent, reached an encapsulation efficiency of 98% and 92%, respectively. In vitro, treating lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages with the liposomes decreased TNFα and nitric oxide (NO) secretion, while NAC increased the penetration of nanoparticles through the mucus. In vivo, we used LPS-induced lung inflammation model to assess the accumulation and therapeutic efficacy of the liposomes in C57BL/6 mice, either by intravenous (IV), endotracheal (ET) or IV plus ET nanoparticles administrations. Using both administration methods, liposomes exhibited an increased accumulation profile in the inflamed lungs over 48 h. Interestingly, while IV-administrated liposomes distributed widely throughout the lung, ET liposomes were present in lungs parenchyma but were not detected at some distal regions of the lungs, possibly due to imperfect airflow regimes. Twenty hours after the different treatments, lungs were assessed for markers of inflammation. We found that the nanoparticle treatment had a superior therapeutic effect compared to free drugs in treating ARDS, reducing inflammation and TNFα, IL-6 and IL-1ß cytokine secretion in bronchoalveolar lavage (BAL), and that the combined treatment, delivering nanoparticles IV and ET simultaneously, had the best outcome of all treatments. Interestingly, also the DPPC lipid component alone played a therapeutic role in reducing inflammatory markers in the lungs. Collectively, we show that therapeutic nanoparticles accumulate in inflamed lungs holding potential for treating lung disorders. SIGNIFICANCE: In this study we compare intravenous versus intratracheal delivery of nanoparticles for treating lung disorders, specifically, acute respiratory distress syndrome (ARDS). By co-loading two medications into lipid nanoparticles, we were able to reduce both inflammation and mucus secretion in the inflamed lungs. Both modes of delivery resulted in high nanoparticle accumulation in the lungs, intravenously administered nanoparticles reached lung endothelial while endotracheal delivery reached lung epithelial. Combining both delivery approaches simultaneously provided the best ARDS treatment outcome.
Asunto(s)
COVID-19 , Enfermedades Pulmonares , Síndrome de Dificultad Respiratoria , Acetilcisteína/farmacología , Animales , Humanos , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Liposomas/uso terapéutico , Pulmón , Ratones , Ratones Endogámicos C57BL , Nanopartículas , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Factor de Necrosis Tumoral alfaRESUMEN
The field of nanotechnology and personalised medicine is undergoing drastic changes in the approach and efficiency of experimentation. The COVID-19 pandemic has spiralled into mass stagnation of major laboratories around the globe and led to increased investment into remote systems for nanoparticle experiments. A significant number of laboratories now operate using automated systems; however, the extension to nanoparticle preparation and artificial intelligence-dependent databases holds great translational promise. The strive to combine automation with artificial intelligence (AI) grants the ability to optimise targeted therapeutic nanoparticles for unique cell types and patients. In this perspective, the current and future trends of automated approaches to nanomedicine synthesis are discussed and compared with traditional methods.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Liposomas/síntesis química , Inteligencia Artificial , Sistemas de Liberación de Medicamentos , Humanos , Dispositivos Laboratorio en un Chip , Liposomas/química , Nanopartículas , Medicina de Precisión , RobóticaRESUMEN
Infection with carbapenem-resistant Enterobacteriaceae (CRE) has become an important challenge in health care settings and a growing concern worldwide. Since infection is preceded by colonization, an understanding of the latter may reduce CRE infections. We aimed to characterize the gut microbiota in CRE carriers, assuming that microbiota alterations precede CRE colonization. We evaluated the gut microbiota using 16S rRNA gene sequencing extracted of fecal samples collected from hospitalized CRE carriers and two control groups, hospitalized noncarriers and healthy adults. The microbiota diversity and composition in CRE-colonized patients differed from those of the control group participants. These CRE carriers displayed lower phylogenetic diversity and dysbiotic microbiota, enriched with members of the family Enterobacteriaceae Concurrent with the enrichment in Enterobacteriaceae, a depletion of anaerobic commensals was observed. Additionally, changes in several predicted metabolic pathways were observed for the CRE carriers. Concomitantly, we found higher prevalence of bacteremia in the CRE carriers. Several clinical factors that might induce changes in the microbiota were examined and found to be insignificant between the groups. The compositional and functional changes in the microbiota of CRE-colonized patients are associated with increased risk for systemic infection. Our study results provide justification for attempts to restore the dysbiotic microbiota with probiotics or fecal transplantation.IMPORTANCE The gut microbiota plays important roles in the host's normal function and health, including protection against colonization by pathogenic bacteria. Alterations in the gut microbial profile can potentially serve as an early diagnostic tool, as well as a therapeutic strategy against colonization by and carriage of harmful bacteria, including antibiotic-resistant pathogens. Here, we show that the microbiota of hospitalized patients demonstrated specific taxa which differed between carriers of carbapenem-resistant Enterobacteriaceae (CRE) and noncarriers. The difference in the microbiota also dictates alterations in microbiome-specific metabolic capabilities, in association with increased prevalence of systemic infection. Reintroducing specific strains and/or correction of dysbiosis with probiotics or fecal transplantation may potentially lead to colonization by bacterial taxa responsible for protection against or depletion of antibiotic-resistant pathogens.
Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos/patogenicidad , Portador Sano/microbiología , Disbiosis/microbiología , Infecciones por Enterobacteriaceae/fisiopatología , Intestinos/fisiopatología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Carbapenémicos/farmacología , Estudios de Cohortes , Infecciones por Enterobacteriaceae/microbiología , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Humanos , Intestinos/microbiología , Masculino , Redes y Vías Metabólicas , Persona de Mediana Edad , Filogenia , ARN Ribosómico 16S/genética , Adulto JovenRESUMEN
During the last few decades there has been a staggering rise in human consumption of soybean-oil (SO). The microbiome and specific taxa composing it are dramatically affected by diet; specifically, by high-fat diets. Increasing evidence indicates the association between dysbiosis and health or disease state, including cardiovascular diseases (CVD) and atherosclerosis pathogenesis in human and animal models. To investigate the effects of high SO intake, C57BL/6 mice were orally supplemented with SO-based emulsion (SOE) for one month, followed by analyses of atherosclerosis-related biomarkers and microbiota profiling by 16S rRNA gene sequencing of fecal DNA. SOE-supplementation caused compositional changes to 64 taxa, including enrichment in Bacteroidetes, Mucispirillum, Prevotella and Ruminococcus, and decreased Firmicutes. These changes were previously associated with atherosclerosis in numerous studies. Among the shifted taxa, 40 significantly correlated with at least one atherosclerosis-related biomarker (FDR < 0.05), while 13 taxa positively correlated with the average of all biomarkers. These microbial alterations also caused a microbial-derived metabolic-pathways shift, including enrichment in different amino-acid metabolic-pathways known to be implicated in CVD. In conclusion, our results demonstrate dysbiosis following SOE supplementation associated with atherosclerosis-related biomarkers. These findings point to the microbiome as a possible mediator to CVD, and it may be implemented into non-invasive diagnostic tools or as potential therapeutic strategies.
RESUMEN
The gut microbiota is a complex ecosystem, affected by both environmental factors and host genetics. Here, we aim at uncovering the bacterial taxa whose gut persistence is controlled by host genetic variation. We used a murine model based on inbred lines BALB/c and C57BL/6J and their F1 reciprocal hybrids (âC57BL/6J × âBALB/c; âBALB/c × âC57BL/6J). To guarantee genetic similarity of F1 offspring, including the sex chromosomes, we used only female mice. Based on 16S rRNA gene sequencing, we found that the genetically different inbred lines present different microbiota, whereas their genetically identical F1 reciprocal hybrids presented similar microbiota. Moreover, the F1 microbial composition differed from that of both parental lines. Twelve taxa were shown to have genetically controlled gut persistence, while none were found to show maternal effects. Nine of these taxa were dominantly inherited by the C57BL/6J line. Cohousing of the parental inbred lines resulted in a temporary and minor shift in microbiota composition, which returned back to the former microbial composition following separation, indicating that each line tends to maintain a unique bacterial signature reflecting the line. Taken together, our findings indicate that mouse genetics has an effect on the microbial composition in the gut, which is greater than maternal effect and continuous exposure to different microbiota of the alternative line. Uncovering the bacterial taxa associated with host genetics and understanding their role in the gut ecosystem could lead to the development of genetically oriented probiotic products, as part of the personalized medicine approach.IMPORTANCE The gut microbiota play important roles for their host. The link between host genetics and their microbial composition has received increasing interest. Using a unique reciprocal cross model, generating genetically similar F1 hybrids with different maternal inoculation, we demonstrate the inheritance of gut persistence of 12 bacterial taxa. No taxa identified as maternally transmitted. Moreover, cohabitation of two genetically different inbred lines did not dramatically affect the microbiota composition. Taken together, our results demonstrate the importance of the genetic effect over maternal inoculation or effect of exposure to unlike exogenous microbiota. These findings may lead to the development of personalized probiotic products, specifically designed according to the genetic makeup.
Asunto(s)
Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Microbioma Gastrointestinal , Antecedentes Genéticos , Ratones/microbiología , Animales , Femenino , Hibridación Genética , Ratones/genética , Ratones Endogámicos BALB C , Ratones Endogámicos C57BLRESUMEN
The unsaturated aldehyde acrolein is pro-atherogenic, and the polyphenol-rich pomegranate juice (PJ), known for its anti-oxidative/anti-atherogenic properties, inhibits macrophage foam cell formation, the hallmark feature of early atherosclerosis. This study aimed to investigate two unexplored areas of acrolein atherogenicity: macrophage lipid metabolism and the gut microbiota composition. The protective effects of PJ against acrolein atherogenicity were also evaluated. Atherosclerotic apolipoprotein E-deficient (apoE-/-) mice that were fed acrolein (3 mg/kg/day) for 1 month showed significant increases in serum and aortic cholesterol, triglycerides, and lipid peroxides. In peritoneal macrophages isolated from the mice and in J774A.1 cultured macrophages, acrolein exposure increased intracellular oxidative stress and stimulated cholesterol and triglyceride accumulation via enhanced rates of their biosynthesis and over-expression of key regulators of cellular lipid biosynthesis: sterol regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and diacylglycerol acyltransferase1 (DGAT1). Acrolein-fed mice demonstrated a major shift in the gut microbiota composition, including a significant phylum-level change in increased Firmicutes and decreased Bacteroidetes. At the family level, acrolein significantly increased the prevalence of Ruminococcaceae and Lachnospiraceae of which the Coprococcus genus was significantly and positively correlated with serum, aortic and macrophage lipid levels and peroxidation. The pro-atherogenic effects of acrolein on serum, aortas, macrophages, and the gut microbiota were substantially abolished by PJ. In conclusion, these findings provide novel mechanisms by which acrolein increases macrophage lipid accumulation and alters the gut microbiota composition in association with enhanced atherogenesis. Moreover, PJ was found as an effective strategy against acrolein atherogenicity.