Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
SLAS Discov ; 29(2): 100137, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38128829

RESUMEN

Aberrant protein aggregation is a pathological cellular hallmark of many neurodegenerative diseases, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), where the tau protein is aggregating, forming neurofibrillary tangles (NFTs), and propagating from neuron to neuron. These processes have been linked to disease progression and a decline in cognitive function. Various therapeutic approaches aim at the prevention or reduction of tau aggregates in neurons. Human induced pluripotent stem cells (hiPSCs) are a very valuable tool in neuroscience discovery, as they offer access to potentially unlimited amounts of cell types that are affected in disease, including cortical neurons, for in vitro studies. We have generated an in vitro model for tau aggregation that uses hiPSC - derived neurons expressing an aggregation prone, fluorescently tagged version of the human tau protein after lentiviral transduction. Upon addition of tau seeds in the form of recombinant sonicated paired helical filaments (sPHFs), the neurons show robust, disease-like aggregation of the tau protein. The model was developed as a plate-based high content screening assay coupled with an image analysis algorithm to evaluate the impact of small molecules or genetic perturbations on tau. We show that the assay can be used to evaluate small molecules or screen targeted compound libraries. Using siRNA-based gene knockdown, genes of interest can be evaluated, and we could show that a targeted gene library can be screened, by screening nearly 100 deubiquitinating enzymes (DUBs) in that assay. The assay uses an imaging-based readout, a relatively short timeline, quantifies the extent of tau aggregation, and also allows the assessment of cell viability. Furthermore, it can be easily adapted to different hiPSC lines or neuronal subtypes. Taken together, this complex and highly relevant approach can be routinely applied on a weekly basis in the screening funnels of several projects and generates data with a turnaround time of approximately five weeks.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo
2.
Neurobiol Dis ; 182: 106126, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37086756

RESUMEN

Intraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2. In addition, we show that the previously described cleavage site at D421 is also efficiently processed by caspase-2, and both sites are cleaved in human brain samples. Caspase-2-generated Tau fragments show increased aggregation potential in vitro, but do not accumulate in vivo after AAV-mediated overexpression in mouse hippocampus. Interestingly, we observe that steady-state protein levels of caspase-2 generated Tau fragments are low in our in vivo model despite strong RNA expression, suggesting efficient clearance. Consistent with this hypothesis, we find that caspase-2 cleavage significantly improves the recognition of Tau by the ubiquitin E3 ligase CHIP, leading to increased ubiquitination and faster degradation of Tau fragments. Taken together our data thus suggest that CHIP-induced ubiquitination is of particular importance for the clearance of caspase-2 generated Tau fragments in vitro and in vivo.


Asunto(s)
Caspasa 2 , Proteínas tau , Humanos , Masculino , Femenino , Animales , Ratones , Modelos Animales de Enfermedad , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo , Caspasa 2/metabolismo , Encéfalo/metabolismo , Inmunoprecipitación de Cromatina , Ubiquitinación
3.
Methods Mol Biol ; 1994: 31-39, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31124102

RESUMEN

To better understand and model neurological, in particular neurodegenerative diseases, human induced pluripotent stem cells (hiPSCs) offer a great source for generation of neural cells. We provide a protocol for the differentiation of hiPSc-derived astrocytes in vitro. This protocol not only is chemically defined, that is, it does not use serum, but also allows for the expansion of astrocyte progenitor cells and mature astrocytes. Large batches of hiPSc-derived astrocytes can be stored and used for defined in vitro disease models.


Asunto(s)
Astrocitos/citología , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Modelos Biológicos , Células-Madre Neurales/efectos de los fármacos , Enfermedades Neurodegenerativas , Neurogénesis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...