Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Yeast ; 36(9): 571-587, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31243797

RESUMEN

The main aim of the work was to utilize heterozygosity of industrial yeast strains to construct new baker's yeast strains. Commercial baker's yeast strain ALKO 743, its more ethanol tolerant descendant ALKO 554 selected initially for growth over 300 generations in increasing ethanol concentrations in a glucose medium, and ALKO 3460 from an old domestic sour dough starter were used as starting strains. Isolated meiotic segregants of the strains were characterized genetically for sporulation ability and mating type, and the ploidy was determined physically. Heterozygosity of the segregant strains was estimated by a variety of molecular characterizations and fermentation and growth assays. The results showed wide heterozygosity and that the segregants were clustered into subgroups. This clustering was used for choosing distantly or closely related partners for strain construction crosses. Intrastrain hybrids made with segregants of ALKO 743 showed 16-24% hybrid vigour or heterosis. Interstrain hybrids with segregants of ALKO 743 and ALKO 3460 showed a wide variety of characteristics but also clear heterosis of 27-31% effects as assayed by lean and sugar dough raising. Distiller's yeast ALKO 554 turned out to be a diploid genetic segregant and not just a more ethanol tolerant mutant of the tetraploid parent strain ALKO 743.

2.
FEMS Yeast Res ; 18(2)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29415275

RESUMEN

I was fortunate to enter yeast research at the Alko Research Laboratories with a strong tradition in yeast biochemistry and physiology studies. At the same time in the 1980s there was a fundamental or paradigm change in molecular biology research with discoveries in DNA sequencing and other analytical and physical techniques for studying macromolecules and cells. Since that time biotechnological research has expanded the traditional fermentation industries to efficient production of industrial and other enzymes and specialty chemicals. Our efforts were directed towards improving the industrial production organisms: minerals enriched yeasts (Se, Cr, Zn) and high glutathione content yeast, baker´s, distiller´s, sour dough and wine yeasts, and the fungal Trichoderma reesei platform for enzyme production. I am grateful for the trust of my colleagues in several leadership positions at the Alko Research Laboratories, Yeast Industry Platform and at the international yeast community.


Asunto(s)
Microbiología Industrial , Investigación , Levaduras , Alcoholes , Fermentación , Historia del Siglo XX , Humanos , Microbiología Industrial/historia , Investigación/historia , Azufre
3.
Int J Food Microbiol ; 176: 38-48, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24561828

RESUMEN

The objective was to study folate production of yeast strains, bacteria isolated from oat bran, and selected lactic acid bacteria as well as one propionibacterium in oat and barley based models. Simultaneously, we aimed at sustaining the stability of viscosity, representing the physicochemical state of beta-glucan. Total folate contents were determined microbiologically and vitamers for selected samples by UHPLC. Folate in yeast cells comprised mainly 5-methyltetrahydrofolate and tetrahydrofolate. Folate production by microbes in YPD medium was different to that in cereal fermentations where vitamers included 5-methyltetrahydrofolate, 5,10-methenyltetrahydrofolate and formylated derivatives. Microbes producing significant amounts of folate without affecting viscosity were Saccharomyces cerevisiae ALKO743 and Candida milleri ABM4949 among yeasts and Pseudomonas sp. ON8 and Janthinobacterium sp. RB4 among bacteria. Net folate production was up to 120 ng/g after 24 h fermentation and could increase during 2-week storage. Glucose addition increased the proportion of 5-methyltetrahydrofolate. Streptococcus thermophilus ABM5097, Lactobacillus reuteri, and Propionibacterium sp. ABM5378 produced folate but in lower concentrations. Both endogenous and added microbes contribute to folate enhancement. Selection of microbes with folate producing capability and limited hydrolytic activity will enable the development of products rich in folate and beta-glucan.


Asunto(s)
Avena/microbiología , Ácido Fólico/biosíntesis , Microbiología de Alimentos , Hordeum/microbiología , Levaduras/metabolismo , beta-Glucanos , Fermentación , Ácido Fólico/análisis , Viscosidad , Levaduras/enzimología
4.
Appl Microbiol Biotechnol ; 89(4): 1029-37, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21052993

RESUMEN

Molecular mechanisms leading to glutathione (GSH) over-accumulation in a Saccharomyces cerevisiae strain produced by UV irradiation-induced random mutagenesis were studied. The mutant accumulated GSH but also cysteine and γ-glutamylcysteine in concentrations that were several fold higher than in its wild-type parent strain under all studied cultivation conditions (chemostat, fed-batch, and turbidostat). Transcript analyses along with shotgun proteome quantification indicated a difference in the expression of a number of genes and proteins, the most pronounced of which were several fold higher expression of CYS3, but also that of GSH1 and its transcriptional activator YAP1. This together with the higher intracellular cysteine concentration is most likely the primary factor underlying GSH over-accumulation in the mutant. Comparative sequencing of GSH1 and the fed-batch experiments with continuous cysteine addition demonstrated that the feedback inhibition of Gsh1p by GSH was still operational in the mutant.


Asunto(s)
Glutatión/metabolismo , Mutación , Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Dipéptidos/metabolismo , Perfilación de la Expresión Génica , Proteoma/análisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Rayos Ultravioleta
5.
Int J Food Microbiol ; 142(3): 277-85, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20678822

RESUMEN

The aim of this research was to identify endogenous bacteria in commercial oat bran and rye flake products in order to study their folate production capability while maintaining the soluble dietary fibre components in physiologically active, unhydrolyzed form. Fourty-two bacteria were isolated from three different oat bran products and 26 bacteria from one rye flake consumer product. The bacteria were tentatively identified by sequence analysis of the 16S rRNA genes. The identification results revealed up to 18 distinct bacterial species belonging to 13 genera in oat bran, and 11 species belonging to 10 genera in rye flakes. The most common bacterial genus in oat bran was Pantoea, followed by Acinetobacter, Bacillus, and Staphylococcus. Pantoea species dominated also in rye flakes. The extracellular enzymatic activities of the isolates were studied by substrate hydrolysis plate assays. Nearly 80% of the isolates hydrolyzed carboxymethylcellulose, whereas starch-degrading activities were surprisingly rare (10%). Beta-glucan was hydrolyzed by 19% of the isolates. Protease, lipase or xylanase activity was expressed by 24%, 29%, and 16%, respectively, of the isolates. Representatives of the genera Bacillus, Curtobacterium, Pedobacter, and Sanguibacter showed the highest diversity of enzymatic activities, whereas members of Janthinobacterium and Staphylococcus possessed no hydrolytic activities for the substrates studied. Production capability for total folates was analyzed from aerobic cell cultures at the stationary growth phase. The amount of folates was determined separately for the cell mass and the supernatant by microbiological assay. For comparison, folate production was also examined in a number of common lactic acid bacteria. The best producers in oat bran belonged to the genera Bacillus, Janthinobacterium, Pantoea, and Pseudomonas, and those in rye flakes to Chryseobacterium, Erwinia, Plantibacter, and Pseudomonas. Supernatant folate contents were high for Bacillus, Erwinia, Janthinobacterium, Pseudomonas, and Sanguibacter. Compared to the endogenous bacteria, lactic acid bacteria were poor folate producers. The results of this work provide the first insight into the potential role of endogenous microflora in modulating the nutrient levels of oat and rye based cereal products, and pave way to future innovations of nutritionally improved cereal foods.


Asunto(s)
Avena/microbiología , Bacterias/metabolismo , Fibras de la Dieta/metabolismo , Ácido Fólico/biosíntesis , Secale/microbiología , Avena/química , Bacterias/enzimología , Bacterias/genética , Bacterias/aislamiento & purificación , Fibras de la Dieta/análisis , Grano Comestible , Hidrólisis , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Secale/química , Solubilidad
6.
Int J Food Microbiol ; 143(1-2): 41-7, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20708290

RESUMEN

Twenty bacteria isolated from three commercial oat bran products were tested for their folate production capability. The bacteria as well as some reference organisms were grown until early stationary phase on a rich medium (YPD), and the amount of total folate in the separated cell mass and the culture medium (supernatant) was determined by microbiological assay. Folate vitamer distribution was determined for eight bacteria including one isolated from rye flakes. For seven bacteria the effect of temperature and pH on folate production was studied in more detail. Relatively large amount of folate was both produced in the cell biomass (up to 20.8microg/g) and released to the culture medium (up to 0.38microg/g) by studied bacteria. The best producers were characterized as Bacillus subtilis ON4, Chryseobacterium sp. NR7, Janthinobacterium sp. RB4, Pantoea agglomerans ON2, and Pseudomonas sp ON8. The level of folate released in culture medium was the highest for B. subtilis ON5, Chryseobacterium sp. NR7, Curtobacterium sp. ON7, Enterococcus durans ON9, Janthinobacterium sp. RB4, Paenibacillus sp. ON10, Propionibacterium sp. RB9, and Staphylococcus kloosii RB7. Marked differences in the distribution of folate vitamers among the bacterial strains were revealed by the HPLC analysis. The main vitamers were tetrahydrofolate, 5,10-methenyltetrahydrofolate, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate. Increase in the folate content during bacterial growth was accompanied by proportional increase in the 5-methyltetrahydrofolate content and decrease of 5-formyltetrahydrofolate. 10-Formylfolic acid dominated in the culture media of four bacteria, and Janthinobacterium sp. RB4 was also found to excrete 5-methyltetrahydrofolate. Intracellular folate content was higher when the bacteria were grown at 28 degrees C than at 18 degrees C or 37 degrees C and also higher at pH 7 than at pH 5.5.


Asunto(s)
Avena/microbiología , Bacterias/metabolismo , Grano Comestible/microbiología , Ácido Fólico/biosíntesis , Medios de Cultivo , Concentración de Iones de Hidrógeno , Secale/microbiología , Temperatura
7.
Int J Food Microbiol ; 106(2): 137-43, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16213050

RESUMEN

Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans.


Asunto(s)
Fermentación , Ácido Fólico/metabolismo , Lactobacillus/metabolismo , Secale/microbiología , Levaduras/metabolismo , Pan/microbiología , Técnicas de Cocultivo , Recuento de Colonia Microbiana , Ácido Fólico/análisis , Ácido Fólico/biosíntesis , Manipulación de Alimentos/métodos , Microbiología de Alimentos
8.
Yeast ; 22(10): 805-12, 2005 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-16088877

RESUMEN

We have cloned by complementation in Saccharomyces cerevisiae and sequenced a LEU2 gene from the sour dough yeast Candida milleri CBS 8195 and studied its chromosomal location. The LEU2 coding sequence was 1092 nt long encoding a putative beta-isopropylmalate dehydrogenase protein of 363 amino acids. The nucleotide sequence in the coding region had 71.6% identity to S. cerevisiae LEU2 sequence. On the protein level, the identity of C. milleri Leu2p to S. cerevisiae Leu2p was 84.1%. The CmLEU2 DNA probe hybridized to one to three chromosomal bands and two or three BamHI restriction fragments in C. milleri but did not give any signal to chromosomes or restriction fragments of C. albicans, S. cerevisiae, S. exiguus or Torulaspora delbrueckii. Using CmLEU2 probe for DNA hybridization makes it easy to quickly identify C. milleri among other sour dough yeasts.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Candida/genética , Genes Fúngicos , 3-Isopropilmalato Deshidrogenasa , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Fúngicos/genética , Clonación Molecular , Marcadores Genéticos , Datos de Secuencia Molecular , Homología de Secuencia , Especificidad de la Especie
9.
Appl Environ Microbiol ; 54(1): 245-249, 1988 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16347529

RESUMEN

Molasses is widely used as a substrate for commercial yeast production. The complete hydrolysis of raffinose, which is present in beet molasses, by Saccharomyces strains requires the secretion of alpha-galactosidase, in addition to the secretion of invertase. Raffinose is not completely utilized by commercially available yeast strains used for baking, which are Mel. In this study we integrated the yeast MEL1 gene, which codes for alpha-galactosidase, into a commercial mel baker's yeast strain. The Mel phenotype of the new strain was stable. The MEL1 gene was expressed when the new Mel baker's yeast was grown in molasses medium under conditions similar to those used for baker's yeast production at commercial factories. The alpha-galactosidase produced by this novel baker's yeast strain hydrolyzed all the melibiose that normally accumulates in the growth medium. As a consequence, additional carbohydrate was available to the yeasts for growth. The new strain also produced considerably more alpha-galactosidase than did a wild-type Mel strain and may prove useful for commercial production of alpha-galactosidase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...