Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(4): e15230, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37095969

RESUMEN

In this work, nanocrystalline nickel and nickel-molybdenum alloys were electrodeposited from electrolytes based on deep eutectic solvents. Eutectic mixtures of choline chloride with ethylene glycol (ethaline) and urea (reline) were used as typical representatives of deep eutectic solvents. The deposited Ni and Ni-Mo films were evaluated as potential electrocatalytic materials for green hydrogen production via electrolysis of alkaline aqueous solutions. The electrodeposited samples were characterized by XRD, SEM and EDX techniques, and the electrochemical behavior was evaluated by means of linear voltammetry and Tafel analysis. It was shown that the deposition of nickel (without molybdenum) from the electrolytes based on ethaline provides a higher electrocatalytic activity of the material with respect to the hydrogen evolution reaction than the material deposited from the reline-based electrolytes. The reline-based plating electrolytes contribute to a greater inclusion of molybdenum in the fabricated Ni-Mo alloys and therefore ensure increased electrocatalytic activity as compared with the ethaline-based electrolytes. The electrocatalytic behavior well correlates with the molybdenum content in the coatings. Ni and Ni-Mo electrodeposits produced from the deep eutectic solvent-mediated plating baths exhibit improved electrocatalytic performance and can be considered as promising catalytic materials for water electrolysis in green hydrogen energy.

2.
Ultrason Sonochem ; 73: 105496, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33636551

RESUMEN

The modification of natural clinoptilolite with silver ions using ultrasound has been investigated in the current work. The modification process was performed using clinoptilolite of different fractions (0-3.0 mm) over the temperature range of 25-55 °C, ultrasonic power range of 8.0-12.5 W and AgNO3 concentration range of 0.01-0.1 M. The zeolite modification was performed in the presence of sonication and mechanical stirring in separate runs for comparison. Fundamental analysis demonstrated that the use of ultrasound ensures desorption of air from clinoptilolite particles and accelerates the diffusion of Ag+ ions and subsequent ion exchange. Increasing the particle size of clinoptilolite led to a natural decrease in its sorption capacity. A slight increase in the sorption capacity with an increase in the equivalent particle diameter from 0.081 to 0.35 mm was seen due to changes in the structure of clinoptilolite particles during mechanical grinding. The calculated temperature coefficient of the sorption process of Ag+ ions as <1.47 means that the modification takes place with dominant control in the intradiffusion region. Increasing the power of ultrasonic irradiation did not provide a monotonous change in the sorption capacity of clinoptilolite. Increasing the concentration of argentum nitrate solution provided an increase in the content of silver ions in clinoptilolite. In general, the advantage of using ultrasonic vibrations to modify the natural clinoptilolite of different fractions with Ag+ ions was demonstrated in terms of achieving higher sorption capacity, also elucidating the effect of different operating conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA