Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 89, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845058

RESUMEN

The microtubule-associated protein Tau is a key player in various neurodegenerative conditions, including Alzheimer's disease (AD) and Tauopathies, where its hyperphosphorylation disrupts neuronal microtubular lattice stability. Glaucoma, a neurodegenerative disorder affecting the retina, leads to irreversible vision loss by damaging retinal ganglion cells and the optic nerve, often associated with increased intraocular pressure. Prior studies have indicated Tau expression and phosphorylation alterations in the retina in both AD and glaucoma, yet the causative or downstream nature of Tau protein changes in these pathologies remains unclear. This study investigates the impact of Tau protein modulation on retinal neurons under normal and experimental glaucoma conditions. Employing AAV9-mediated gene therapy for Tau overexpression and knockdown, both manipulations were found to adversely affect retinal structural and functional measures as well as neuroprotective Akt/Erk survival signalling in healthy conditions. In the experimental glaucoma model, Tau overexpression intensified inner retinal degeneration, while Tau silencing provided significant protection against these degenerative changes. These findings underscore the critical role of endogenous Tau protein levels in preserving retinal integrity and emphasize the therapeutic potential of targeting Tau in glaucoma pathology.


Asunto(s)
Terapia Genética , Glaucoma , Proteínas tau , Proteínas tau/metabolismo , Animales , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/genética , Terapia Genética/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Retina/metabolismo , Retina/patología , Sistema de Señalización de MAP Quinasas/fisiología , Transducción de Señal/fisiología , Ratones , Ratones Endogámicos C57BL , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Fenotipo
2.
Prog Retin Eye Res ; 101: 101273, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759947

RESUMEN

The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid ß-protein (Aß) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aß deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.


Asunto(s)
Enfermedad de Alzheimer , Retina , Enfermedades de la Retina , Enfermedad de Alzheimer/fisiopatología , Humanos , Enfermedades de la Retina/fisiopatología , Enfermedades de la Retina/diagnóstico , Retina/fisiopatología , Animales , Tomografía de Coherencia Óptica/métodos , Péptidos beta-Amiloides/metabolismo , Vasos Retinianos/fisiopatología , Vasos Retinianos/diagnóstico por imagen
3.
Front Neurosci ; 18: 1393293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770241

RESUMEN

While recent advances in diagnostics and therapeutics offer promising new approaches for Alzheimer's disease (AD) diagnosis and treatment, there is still an unmet need for an effective remedy, suggesting new avenues of research are required. Besides many plausible etiologies for AD pathogenesis, mounting evidence supports a possible role for microbial infections. Various microbes have been identified in the postmortem brain tissues of human AD patients. Among bacterial pathogens in AD, Chlamydia pneumoniae (Cp) has been well characterized in human AD brains and is a leading candidate for an infectious involvement. However, no definitive studies have been performed proving or disproving Cp's role as a causative or accelerating agent in AD pathology and cognitive decline. In this review, we discuss recent updates for the role of Cp in human AD brains as well as experimental models of AD. Furthermore, based on the current literature, we have compiled a list of potential mechanistic pathways which may connect Cp with AD pathology.

4.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464292

RESUMEN

Introduction: The vascular contribution to Alzheimer's disease (AD) is tightly connected to cognitive performance across the AD continuum. We topographically describe retinal perivascular amyloid plaque (AP) burden in subjects with normal or impaired cognition. Methods: Using scanning laser ophthalmoscopy, we quantified retinal peri-arteriolar and peri-venular curcumin-positive APs in the first, secondary and tertiary branches in twenty-eight subjects. Perivascular AP burden among cognitive states was correlated with neuroimaging and cognitive measures. Results: Peri-arteriolar exceeded peri-venular AP count (p<0.0001). Secondary branch AP count was significantly higher in cognitively impaired (p<0.01). Secondary small and tertiary peri-venular AP count strongly correlated with clinical dementia rating, hippocampal volumes, and white matter hyperintensity count. Discussion: Our topographic analysis indicates greater retinal amyloid accumulation in the retinal peri-arteriolar regions overall, and distal peri-venular regions in cognitively impaired individuals. Larger longitudinal studies are warranted to understand the temporal-spatial relationship between vascular dysfunction and perivascular amyloid deposition in AD. Highlights: Retinal peri-arteriolar region exhibits more amyloid compared with peri-venular regions.Secondary retinal vascular branches have significantly higher perivascular amyloid burden in subjects with impaired cognition, consistent across sexes.Cognitively impaired individuals have significantly greater retinal peri-venular amyloid deposits in the distal small branches, that correlate with CDR and hippocampal volumes.

5.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405854

RESUMEN

Importance: This study identifies and quantifies diverse pathological tau isoforms in the retina of both early and advanced-stage Alzheimer's disease (AD) and determines their relationship with disease status. Objective: A case-control study was conducted to investigate the accumulation of retinal neurofibrillary tangles (NFTs), paired helical filament (PHF)-tau, oligomeric tau (oligo-tau), hyperphosphorylated tau (p-tau), and citrullinated tau (Cit-tau) in relation to the respective brain pathology and cognitive dysfunction in mild cognitively impaired (MCI) and AD dementia patients versus normal cognition (NC) controls. Design setting and participants: Eyes and brains from donors diagnosed with AD, MCI (due to AD), and NC were collected (n=75 in total), along with clinical and neuropathological data. Brain and retinal cross-sections-in predefined superior-temporal and inferior-temporal (ST/IT) subregions-were subjected to histopathology analysis or Nanostring GeoMx digital spatial profiling. Main outcomes and measure: Retinal burden of NFTs (pretangles and mature tangles), PHF-tau, p-tau, oligo-tau, and Cit-tau was assessed in MCI and AD versus NC retinas. Pairwise correlations revealed associations between retinal and brain parameters and cognitive status. Results: Increased retinal NFTs (1.8-fold, p=0.0494), PHF-tau (2.3-fold, p<0.0001), oligo-tau (9.1-fold, p<0.0001), CitR 209 -tau (4.3-fold, p<0.0001), pSer202/Thr205-tau (AT8; 4.1-fold, p<0.0001), and pSer396-tau (2.8-fold, p=0.0015) were detected in AD patients. Retinas from MCI patients showed significant increases in NFTs (2.0-fold, p=0.0444), CitR 209 -tau (3.5-fold, p=0.0201), pSer396-tau (2.6-fold, p=0.0409), and, moreover, oligo-tau (5.8-fold, p=0.0045). Nanostring GeoMx quantification demonstrated upregulated retinal p-tau levels in MCI patients at phosphorylation sites of Ser214 (2.3-fold, p=0.0060), Ser396 (1.8-fold, p=0.0052), Ser404 (2.4-fold, p=0.0018), and Thr231 (3.3-fold, p=0.0028). Strong correlations were found between retinal tau forms to paired-brain pathology and cognitive status: a) retinal oligo-tau vs. Braak stage (r=0.60, P=0.0002), b) retinal PHF-tau vs. ABC average score (r=0.64, P=0.0043), c) retinal pSer396-tau vs. brain NFTs (r=0.68, P<0.0001), and d) retinal pSer202/Thr205-tau vs. MMSE scores (r= -0.77, P=0.0089). Conclusions and Relevance: This study reveals increases in immature and mature retinal tau isoforms in MCI and AD patients, highlighting their relationship with brain pathology and cognition. The data provide strong incentive to further explore retinal tauopathy markers that may be useful for early detection and monitoring of AD staging through noninvasive retinal imaging.

6.
Alzheimers Dement ; 20(2): 1421-1435, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897797

RESUMEN

This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid ß (Aß) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Trastornos Cerebrovasculares , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Líquido Extracelular , Angiopatía Amiloide Cerebral/terapia , Angiopatía Amiloide Cerebral/patología , Encéfalo/metabolismo , Trastornos Cerebrovasculares/complicaciones
7.
Alzheimers Dement ; 20(1): 728-740, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37917365

RESUMEN

There is emerging evidence that amyloid beta protein (Aß) and tau-related lesions in the retina are associated with Alzheimer's disease (AD). Aß and hyperphosphorylated (p)-tau deposits have been described in the retina and were associated with small amyloid spots visualized by in vivo imaging techniques as well as degeneration of the retina. These changes correlate with brain amyloid deposition as determined by histological quantification, positron emission tomography (PET) or clinical diagnosis of AD. However, the literature is not coherent on these histopathological and in vivo imaging findings. One important reason for this is the variability in the methods and the interpretation of findings across different studies. In this perspective, we indicate the critical methodological deviations among different groups and suggest a roadmap moving forward on how to harmonize (i) histopathologic examination of retinal tissue; (ii) in vivo imaging among different methods, devices, and interpretation algorithms; and (iii) inclusion/exclusion criteria for studies aiming at retinal biomarker validation.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Retina/diagnóstico por imagen , Biomarcadores/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/patología
8.
Neurobiol Dis ; 187: 106307, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739136

RESUMEN

Air pollution poses a significant threat to human health, though a clear understanding of its mechanism remains elusive. In this study, we sought to better understand the effects of various sized particulate matter from polluted air on Alzheimer's disease (AD) development using an AD mouse model. We exposed transgenic Alzheimer's mice in their prodromic stage to different sized particulate matter (PM), with filtered clean air as control. After 3 or 6 months of exposure, mouse brains were harvested and analyzed. RNA-seq analysis showed that various PM have differential effects on the brain transcriptome, and these effects seemed to correlate with PM size. Many genes and pathways were affected after PM exposure. Among them, we found a strong activation in mRNA Nonsense Mediated Decay pathway, an inhibition in pathways related to transcription, neurogenesis and survival signaling as well as angiogenesis, and a dramatic downregulation of collagens. Although we did not detect any extracellular Aß plaques, immunostaining revealed that both intracellular Aß1-42 and phospho-Tau levels were increased in various PM exposure conditions compared to the clean air control. NanoString GeoMx analysis demonstrated a remarkable activation of immune responses in the PM exposed mouse brain. Surprisingly, our data also indicated a strong activation of various tumor suppressors including RB1, CDKN1A/p21 and CDKN2A/p16. Collectively, our data demonstrated that exposure to airborne PM caused a profound transcriptional dysregulation and accelerated Alzheimer's-related pathology.

9.
Front Physiol ; 14: 1179315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37427403

RESUMEN

This review examines the role of angiotensin-converting enzyme (ACE) in the context of Alzheimer's disease (AD) and its potential therapeutic value. ACE is known to degrade the neurotoxic 42-residue long alloform of amyloid ß-protein (Aß42), a peptide strongly associated with AD. Previous studies in mice, demonstrated that targeted overexpression of ACE in CD115+ myelomonocytic cells (ACE10 models) improved their immune responses to effectively reduce viral and bacterial infection, tumor growth, and atherosclerotic plaque. We further demonstrated that introducing ACE10 myelomonocytes (microglia and peripheral monocytes) into the double transgenic APPSWE/PS1ΔE9 murine model of AD (AD+ mice), diminished neuropathology and enhanced the cognitive functions. These beneficial effects were dependent on ACE catalytic activity and vanished when ACE was pharmacologically blocked. Moreover, we revealed that the therapeutic effects in AD+ mice can be achieved by enhancing ACE expression in bone marrow (BM)-derived CD115+ monocytes alone, without targeting central nervous system (CNS) resident microglia. Following blood enrichment with CD115+ ACE10-monocytes versus wild-type (WT) monocytes, AD+ mice had reduced cerebral vascular and parenchymal Aß burden, limited microgliosis and astrogliosis, as well as improved synaptic and cognitive preservation. CD115+ ACE10-versus WT-monocyte-derived macrophages (Mo/MΦ) were recruited in higher numbers to the brains of AD+ mice, homing to Aß plaque lesions and exhibiting a highly Aß-phagocytic and anti-inflammatory phenotype (reduced TNFα/iNOS and increased MMP-9/IGF-1). Moreover, BM-derived ACE10-Mo/MΦ cultures had enhanced capability to phagocytose Aß42 fibrils, prion-rod-like, and soluble oligomeric forms that was associated with elongated cell morphology and expression of surface scavenger receptors (i.e., CD36, Scara-1). This review explores the emerging evidence behind the role of ACE in AD, the neuroprotective properties of monocytes overexpressing ACE and the therapeutic potential for exploiting this natural mechanism for ameliorating AD pathogenesis.

10.
Front Immunol ; 14: 1155935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325640

RESUMEN

Introduction: Osteopontin (OPN; also known as SPP1), an immunomodulatory cytokine highly expressed in bone marrow-derived macrophages (BMMΦ), is known to regulate diverse cellular and molecular immune responses. We previously revealed that glatiramer acetate (GA) stimulation of BMMΦ upregulates OPN expression, promoting an anti-inflammatory, pro-healing phenotype, whereas OPN inhibition triggers a pro-inflammatory phenotype. However, the precise role of OPN in macrophage activation state is unknown. Methods: Here, we applied global proteome profiling via mass spectrometry (MS) analysis to gain a mechanistic understanding of OPN suppression versus induction in primary macrophage cultures. We analyzed protein networks and immune-related functional pathways in BMMΦ either with OPN knockout (OPNKO) or GA-mediated OPN induction compared with wild type (WT) macrophages. The most significant differentially expressed proteins (DEPs) were validated using immunocytochemistry, western blot, and immunoprecipitation assays. Results and discussion: We identified 631 DEPs in OPNKO or GA-stimulated macrophages as compared to WT macrophages. The two topmost downregulated DEPs in OPNKO macrophages were ubiquitin C-terminal hydrolase L1 (UCHL1), a crucial component of the ubiquitin-proteasome system (UPS), and the anti-inflammatory Heme oxygenase 1 (HMOX-1), whereas GA stimulation upregulated their expression. We found that UCHL1, previously described as a neuron-specific protein, is expressed by BMMΦ and its regulation in macrophages was OPN-dependent. Moreover, UCHL1 interacted with OPN in a protein complex. The effects of GA activation on inducing UCHL1 and anti-inflammatory macrophage profiles were mediated by OPN. Functional pathway analyses revealed two inversely regulated pathways in OPN-deficient macrophages: activated oxidative stress and lysosome-mitochondria-mediated apoptosis (e.g., ROS, Lamp1-2, ATP-synthase subunits, cathepsins, and cytochrome C and B subunits) and inhibited translation and proteolytic pathways (e.g., 60S and 40S ribosomal subunits and UPS proteins). In agreement with the proteome-bioinformatics data, western blot and immunocytochemical analyses revealed that OPN deficiency perturbs protein homeostasis in macrophages-inhibiting translation and protein turnover and inducing apoptosis-whereas OPN induction by GA restores cellular proteostasis. Taken together, OPN is essential for macrophage homeostatic balance via the regulation of protein synthesis, UCHL1-UPS axis, and mitochondria-mediated apoptotic processes, indicating its potential application in immune-based therapies.


Asunto(s)
Osteopontina , Complejo de la Endopetidasa Proteasomal , Osteopontina/genética , Osteopontina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteostasis , Proteoma/metabolismo , Macrófagos , Mitocondrias/metabolismo , Apoptosis
11.
Alzheimers Dement ; 19(11): 5185-5197, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37166032

RESUMEN

INTRODUCTION: Vascular amyloid beta (Aß) protein deposits were detected in retinas of mild cognitively impaired (MCI) and Alzheimer's disease (AD) patients. We tested the hypothesis that the retinal vascular tight junctions (TJs) were compromised and linked to disease status. METHODS: TJ components and Aß expression in capillaries and larger blood vessels were determined in post mortem retinas from 34 MCI or AD patients and 27 cognitively normal controls and correlated with neuropathology. RESULTS: Severe decreases in retinal vascular zonula occludens-1 (ZO-1) and claudin-5 correlating with abundant arteriolar Aß40 deposition were identified in MCI and AD patients. Retinal claudin-5 deficiency was closely associated with cerebral amyloid angiopathy, whereas ZO-1 defects correlated with cerebral pathology and cognitive deficits. DISCUSSION: We uncovered deficiencies in blood-retinal barrier markers for potential retinal imaging targets of AD screening and monitoring. Intense retinal arteriolar Aß40 deposition suggests a common pathogenic mechanism of failed Aß clearance via intramural periarterial drainage.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Retina , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Angiopatía Amiloide Cerebral/patología , Claudina-5/metabolismo , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Retina/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología
12.
Acta Neuropathol ; 145(4): 409-438, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36773106

RESUMEN

Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid ß-protein (Aß42) forms and novel intraneuronal Aß oligomers (AßOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aß uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aß42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aß pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aß42, far-peripheral AßOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Humanos , Femenino , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteoma/metabolismo , Proteómica , Retina/patología , Atrofia/patología , Biomarcadores/metabolismo
13.
Ageing Res Rev ; 84: 101819, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36526257

RESUMEN

Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Acetilcolinesterasa/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Medicina de Precisión
14.
Crit Care ; 26(1): 274, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100846

RESUMEN

Acute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury; however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known. We hypothesized that a murine model of mechanical ventilation-induced acute lung injury (VILI) would induce neural injury to the amygdala and hippocampus, brain regions that are implicated in diverse neuropsychiatric conditions, and corresponding delirium- and anxiety-like functional impairments. Furthermore, we hypothesized that these structural and functional changes would reverse with systemic IL-6 inhibition. VILI was induced using high tidal volume (35 cc/kg) mechanical ventilation. Cleaved caspase-3 (CC3) expression was quantified as a neural injury marker and found to be significantly increased in the VILI group compared to spontaneously breathing or anesthetized and mechanically ventilated mice with 10 cc/kg tidal volume. VILI mice treated with systemic IL-6 inhibition had significantly reduced amygdalar and hippocampal CC3 expression compared to saline-treated animals and demonstrated amelioration in acute neuropsychiatric behaviors in open field, elevated plus maze, and Y-maze tests. Overall, these data provide evidence of a pathogenic role of systemic IL-6 in mediating structural and functional acute neuropsychiatric symptoms in VILI and provide preclinical justification to assess IL-6 inhibition as a potential intervention to ameliorate acute neuropsychiatric phenotypes following VILI.


Asunto(s)
Lesión Pulmonar Aguda , Delirio , Lesión Pulmonar Inducida por Ventilación Mecánica , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Delirio/complicaciones , Modelos Animales de Enfermedad , Interleucina-6 , Ratones , Fenotipo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
15.
Acta Neuropathol Commun ; 10(1): 136, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076283

RESUMEN

Single cell RNA sequencing studies identified novel neurodegeneration-associated microglial (MGnD/DAM) subtypes activated around cerebral amyloid plaques. Micro-RNA (miR)-155 of the TREM2-APOE pathway was shown to be a key transcriptional regulator of MGnD microglial phenotype. Despite growing interest in studying manifestations of Alzheimer's disease (AD) in the retina, a CNS organ accessible to noninvasive high-resolution imaging, to date MGnD microglia have not been studied in the AD retina. Here, we discovered the presence and increased populations of Clec7a+ and Galectin-3+ MGnD microglia in retinas of transgenic APPSWE/PS1L166P AD-model mice. Conditionally targeting MGnD microglia by miR-155 ablation via the tamoxifen-inducible CreERT2 system in APPSWE/PS1L166P mice diminished retinal Clec7a+ and Galectin-3+ microglial populations while increasing homeostatic P2ry12+ microglia. Retinal MGnD microglia were often adhering to microvessels; their depletion protected the inner blood-retina barrier and reduced vascular amyloidosis. Microglial miR-155 depletion further limits retinal inflammation. Mass spectrometry analysis revealed enhanced retinal PI3K-Akt signaling and predicted IL-8 and Spp1 decreases in mice with microglia-specific miR-155 knockout. Overall, this study identified MGnD microglia in APPSWE/PS1L166P mouse retina. Transcriptional regulation of these dysfunctional microglia mitigated retinal inflammation and vasculopathy. The protective effects of microglial miR-155 ablation should shed light on potential treatments for retinal inflammation and vascular damage during AD and other ocular diseases.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Galectina 3/genética , Galectina 3/metabolismo , Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Microglía/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Receptores Inmunológicos/metabolismo
16.
PNAS Nexus ; 1(4): pgac164, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36157597

RESUMEN

Alzheimer's disease (AD) is a major risk for the aging population. The pathological hallmarks of AD-an abnormal deposition of amyloid ß-protein (Aß) and phosphorylated tau (pTau)-have been demonstrated in the retinas of AD patients, including in prodromal patients with mild cognitive impairment (MCI). Aß pathology, especially the accumulation of the amyloidogenic 42-residue long alloform (Aß42), is considered an early and specific sign of AD, and together with tauopathy, confirms AD diagnosis. To visualize retinal Aß and pTau, state-of-the-art methods use fluorescence. However, administering contrast agents complicates the imaging procedure. To address this problem from fundamentals, ex-vivo studies were performed to develop a label-free hyperspectral imaging method to detect the spectral signatures of Aß42 and pS396-Tau, and predicted their abundance in retinal cross-sections. For the first time, we reported the spectral signature of pTau and demonstrated an accurate prediction of Aß and pTau distribution powered by deep learning. We expect our finding will lay the groundwork for label-free detection of AD.

17.
ACS Nano ; 16(8): 11815-11832, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35961653

RESUMEN

The ability to cross the blood-brain barrier (BBB) is critical for targeted therapy of the central nerve system (CNS). Six peptide vectors were covalently attached to a 50 kDa poly(ß-l-malic acid)-trileucine polymer forming P/LLL(40%)/vector conjugates. The vectors were Angiopep-2 (AP2), B6, Miniap-4 (M4), and d-configurated peptides D1, D3, and ACI-89, with specificity for transcytosis receptors low-density lipoprotein receptor-related protein-1 (LRP-1), transferrin receptor (TfR), bee venom-derived ion channel, and Aß/LRP-1 related transcytosis complex, respectively. The BBB-permeation efficacies were substantially increased ("boosted") in vector conjugates of P/LLL(40%). We have found that the copolymer group binds at the endothelial membrane and, by an allosterically membrane rearrangement, exposes the sites for vector-receptor complex formation. The specificity of vectors is indicated by competition experiments with nonconjugated vectors. P/LLL(40%) does not function as an inhibitor, suggesting that the copolymer binding site is eliminated after binding of the vector-nanoconjugate. The two-step mechanism, binding to endothelial membrane and allosteric exposure of transcytosis receptors, is supposed to be an integral feature of nanoconjugate-transcytosis pathways. In vivo brain delivery signatures of the nanoconjugates were recapitulated in mouse brains of normal, tumor (glioblastoma), and Alzheimer's disease (AD) models. BBB permeation of the tumor was most efficient, followed by normal and then AD-like brain. In tumor-bearing and normal brains, AP2 was the top performing vector; however, in AD models, D3 and D1 peptides were superior ones. The TfR vector B6 was equally efficient in normal and AD-model brains. Cross-permeation efficacies are manifested through modulated vector coligation and dosage escalation such as supra-linear dose dependence and crossover transcytosis activities.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Enfermedad de Alzheimer/patología , Nanoconjugados , Transcitosis , Péptidos/química , Polímeros/farmacología , Péptidos beta-Amiloides/metabolismo
18.
Harefuah ; 161(8): 523-525, 2022 Aug.
Artículo en Hebreo | MEDLINE | ID: mdl-35979573

RESUMEN

INTRODUCTION: Alzheimer's disease is a neurodegenerative disease pathologically characterized by accumulation of abnormal amyloid-beta (Aß) and tau proteins. Research is currently focused on developing treatments to reduce the risk of developing or inhibiting disease progression. Therefore, there is a need to identify diagnostic tools for the initial stages of the disease. The neuropathological processes in Alzheimer's disease exist several decades before symptoms appear and can be identified by PET imaging or CSF analysis. Still, these methods are limited in availability and may be expensive and invasive, and there is therefore a need to develop accessible, inexpensive and non-invasive diagnostic tools. The retina is a component of the central nervous system. Changes in the retina can reflect the cerebral pathological process in Alzheimer's disease. Indeed, evidence of Aß plaques and abnormal tau proteins in the retina of Alzheimer's patients has been reported. The advantage of the retina is its accessibility for direct visualization by existing and non-invasive means. The following review will examine retinal changes that are suggested as possible biomarkers for Alzheimer's disease and discuss directions for future research in the field.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/metabolismo , Biomarcadores , Diagnóstico Precoz , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Retina/diagnóstico por imagen , Retina/metabolismo , Retina/patología , Proteínas tau/metabolismo
20.
Cells ; 11(9)2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35563884

RESUMEN

Novel, neuroprotective uses of Copaxone (generic name: glatiramer acetate-GA) are being examined, primarily in neurological conditions involving cognitive decline. GA is a well-studied synthetic copolymer that is FDA-approved for immune-based treatment of relapsing remitting multiple sclerosis (RRMS). Clinical studies have explored the potential mechanism of action (MOA) and outcomes of GA immunization in patients. Furthermore, results from these and animal studies suggest that GA has a direct immunomodulatory effect on adaptive and innate immune cell phenotypes and responses. These MOAs have been postulated to have a common neuroprotective impact in several neuroinflammatory and neurodegenerative diseases. Notably, several clinical studies report that the use of GA mitigated MS-associated cognitive decline. Its propensity to ameliorate neuro-proinflammatory and degenerative processes ignites increased interest in potential alternate uses such as in age-related macular degeneration (AMD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Preclinical studies are exploring less frequent subcutaneous administration of GA, such as once weekly or monthly or a single dosing regimen. Indeed, cognitive functions were found to be either preserved, reversed, or improved after the less frequent treatment regimens with GA in animal models of AD. In this systematic review, we examine the potential novel uses of GA across clinical and pre-clinical studies, with evidence for its beneficial impact on cognition. Future investigation in large-size, double-blind clinical trials is warranted to establish the impact of GA immunomodulation on neuroprotection and cognitive preservation in various neurological conditions.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Neuroprotección , Animales , Cognición , Acetato de Glatiramer/farmacología , Acetato de Glatiramer/uso terapéutico , Humanos , Inmunomodulación , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA