Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7774, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522321

RESUMEN

Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-δ, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35848081

RESUMEN

Advances in the synthesis and characterization of colloidal magnetic nanoparticles (NPs) have yielded great gains in the understanding of their complex magnetic behavior, with implications for numerous applications. Recent work using Ni NPs as a model soft ferromagnetic system, for example, achieved quantitative understanding of the superparamagnetic blocking temperature-particle diameter relationship. This hinged, however, on the critical assumption of a ferromagnetic NP volume lower than the chemical volume due to a non-ferromagnetic dead shell indirectly deduced from magnetometry. Here, we determine both the chemical and magnetic average internal structures of Ni NP ensembles via unpolarized, half-polarized, and fully polarized small-angle neutron scattering (SANS) measurements and analyses coupled with X-ray diffraction and magnetometry. The postulated nanometric magnetic dead shell is not only detected but conclusively identified as a non-ferromagnetic Ni phosphide derived from the trioctylphosphine commonly used in hot-injection colloidal NP syntheses. The phosphide shell thickness is tunable via synthesis temperature, falling to as little as 0.5 nm at 170 °C. Temperature- and magnetic field-dependent polarized SANS measurements additionally reveal essentially bulk-like ferromagnetism in the Ni core and negligible interparticle magnetic interactions, quantitatively supporting prior modeling of superparamagnetism. These findings advance the understanding of synthesis-structure-property relationships in metallic magnetic NPs, point to a simple potential route to ligand-free stabilization, and highlight the power of the currently available suite of polarized SANS measurement and analysis capabilities for magnetic NP science and technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA