Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(4): e34024, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22529904

RESUMEN

Many antidepressants are cationic amphipaths, which spontaneously accumulate in natural or reconstituted membranes in the absence of their specific protein targets. However, the clinical relevance of cellular membrane accumulation by antidepressants in the human brain is unknown and hotly debated. Here we take a novel, evolutionarily informed approach to studying the effects of the selective-serotonin reuptake inhibitor sertraline/Zoloft® on cell physiology in the model eukaryote Saccharomyces cerevisiae (budding yeast), which lacks a serotonin transporter entirely. We biochemically and pharmacologically characterized cellular uptake and subcellular distribution of radiolabeled sertraline, and in parallel performed a quantitative ultrastructural analysis of organellar membrane homeostasis in untreated vs. sertraline-treated cells. These experiments have revealed that sertraline enters yeast cells and then reshapes vesiculogenic membranes by a complex process. Internalization of the neutral species proceeds by simple diffusion, is accelerated by proton motive forces generated by the vacuolar H(+)-ATPase, but is counteracted by energy-dependent xenobiotic efflux pumps. At equilibrium, a small fraction (10-15%) of reprotonated sertraline is soluble while the bulk (90-85%) partitions into organellar membranes by adsorption to interfacial anionic sites or by intercalation into the hydrophobic phase of the bilayer. Asymmetric accumulation of sertraline in vesiculogenic membranes leads to local membrane curvature stresses that trigger an adaptive autophagic response. In mutants with altered clathrin function, this adaptive response is associated with increased lipid droplet formation. Our data not only support the notion of a serotonin transporter-independent component of antidepressant function, but also enable a conceptual framework for characterizing the physiological states associated with chronic but not acute antidepressant administration in a model eukaryote.


Asunto(s)
Antidepresivos/metabolismo , Autofagia , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/metabolismo , Antidepresivos/farmacología , Autofagia/efectos de los fármacos , Permeabilidad de la Membrana Celular , Farmacorresistencia Fúngica/genética , Membranas Intracelulares/ultraestructura , Cinética , Lisosomas/metabolismo , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Sertralina/metabolismo , Sertralina/farmacología
2.
Genetics ; 185(4): 1221-33, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20457874

RESUMEN

Numerous studies have shown that the clinical antidepressant sertraline (Zoloft) is biologically active in model systems, including fungi, which do not express its putative protein target, the serotonin/5-HT transporter, thus demonstrating the existence of one or more secondary targets. Here we show that in the absence of its putative protein target, sertraline targets phospholipid membranes that comprise the acidic organelles of the intracellular vesicle transport system by a mechanism consistent with the bilayer couple hypothesis. On the basis of a combination of drug-resistance selection and chemical-genomic screening, we hypothesize that loss of vacuolar ATPase activity reduces uptake of sertraline into cells, whereas dysregulation of clathrin function reduces the affinity of membranes for sertraline. Remarkably, sublethal doses of sertraline stimulate growth of mutants with impaired clathrin function. Ultrastructural studies of sertraline-treated cells revealed a phenotype that resembles phospholipidosis induced by cationic amphiphilic drugs in mammalian cells. Using reconstituted enzyme assays, we also demonstrated that sertraline inhibits phospholipase A(1) and phospholipase D, exhibits mixed effects on phospholipase C, and activates phospholipase A(2). Overall, our study identifies two evolutionarily conserved membrane--active processes-vacuolar acidification and clathrin-coat formation--as modulators of sertraline's action at membranes.


Asunto(s)
Vesículas Citoplasmáticas/efectos de los fármacos , Membranas Intracelulares/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Sertralina/farmacología , Antidepresivos/farmacología , Clatrina/genética , Clatrina/metabolismo , Vesículas Citoplasmáticas/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/genética , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Lípidos de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Mutación , Fosfolipasas/antagonistas & inhibidores , Fosfolipasas/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...