Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Blood ; 141(5): 534-549, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322930

RESUMEN

Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained ∼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.


Asunto(s)
ARN Helicasas DEAD-box , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Adulto , Anciano de 80 o más Años , Femenino , Humanos , Masculino , ARN Helicasas DEAD-box/genética , Células Germinativas , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética
2.
Curr Hematol Malig Rep ; 17(4): 94-104, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35674998

RESUMEN

PURPOSE OF REVIEW: An intact DNA damage response is crucial to preventing cancer development, including in myeloid and lymphoid malignancies. Deficiencies in the homologous recombination (HR) pathway can lead to defective DNA damage responses, and this can occur through inherited germline mutations in HR pathway genes, such as CHEK2 and ATM. We now understand that germline mutations can be identified frequently (~ 5-10%) in patients with myeloid and lymphoid malignancies, and among the most common of these are CHEK2 and ATM. We review the role that deleterious germline CHEK2 and ATM variants play in the development of hematopoietic malignancies, and how this influences clinical practice, including cancer screening, hematopoietic stem cell transplantation, and therapy choice. RECENT FINDINGS: In recent large cohorts of patients diagnosed with myeloid or lymphoid malignancies, deleterious germline loss of function variants in CHEK2 and ATM are among the most common identified. Germline CHEK2 variants predispose to a range of myeloid malignancies, most prominently myeloproliferative neoplasms and myelodysplastic syndromes (odds ratio range: 2.1-12.3), and chronic lymphocytic leukemia (odds ratio 14.83). Deleterious germline ATM variants have been shown to predispose to chronic lymphocytic leukemia (odds ratio range: 1.7-10.1), although additional studies are needed to demonstrate the risk they confer for myeloid malignancies. Early studies suggest there may also be associations between deleterious germline CHEK2 and ATM variants and development of clonal hematopoiesis. Identifying CHEK2 and ATM variants is crucial for the optimal management of patients and families affected by hematopoietic malignancies. OPENING CLINICAL CASE: "A 45 year-old woman presents to your clinic with a history of triple-negative breast cancer diagnosed five years ago, treated with surgery, radiation, and chemotherapy. About six months ago, she developed cervical lymphadenopathy, and a biopsy demonstrated small lymphocytic leukemia. Peripheral blood shows a small population of lymphocytes with a chronic lymphocytic leukemia immunophenotype, and FISH demonstrates a complex karyotype: gain of one to two copies of IGH and FGFR3; gain of two copies of CDKN2C at 1p32.3; gain of two copies of CKS1B at 1q21; tetrasomy for chromosome 3; trisomy and tetrasomy for chromosome 7; tetrasomy for chromosome 9; tetrasomy for chromosome 12; gain of one to two copies of ATM at 11q22.3; deletion of chromosome 13 deletion positive; gain of one to two copies of TP53 at 17p13.1). Given her history of two cancers, you arrange for germline genetic testing using DNA from cultured skin fibroblasts, which demonstrates pathogenic variants in ATM [c.1898 + 2 T > G] and CHEK2 [p.T367Metfs]. Her family history is significant for multiple cancers. (Fig. 1)." Fig. 1 Representative pedigree from a patient with germline pathogenic ATM and CHEK2 variants who was affected by early onset breast cancer and chronic lymphocytic leukemia. Arrow indicates proband. Colors indicate cancer type/disease: purple, breast cancer; blue, lymphoma; brown, melanoma; yellow, colon cancer; and green, autoimmune disease.


Asunto(s)
Neoplasias de la Mama , Neoplasias Hematológicas , Leucemia Linfocítica Crónica de Células B , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/patología , Quinasa de Punto de Control 2/genética , Femenino , Predisposición Genética a la Enfermedad , Células Germinativas/patología , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Humanos , Tetrasomía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA