Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(12): e3002419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048364

RESUMEN

Circadian regulation of gene expression is prevalent and plays critical roles in cell differentiation. However, its roles in the reprogramming of differentiated cells remain largely unknown. Here, we found that one of the master circadian regulators PER1 promoted virus-mediated reprogramming of mouse embryonic fibroblasts (MEFs) to induced neurons (iNs) and induced pluripotent stem cells (iPSCs). Unexpectedly, PER1 achieved this by repressing inflammatory activation of contaminating macrophages in the MEF culture, rather than by directly modulating the reprogrammability of MEFs. More specifically, we found that transduced viruses activated inflammatory genes in macrophages, such as Tnf encoding TNFα, one of the central inflammatory regulators and an autocrine activator of macrophages. TNFα inhibited iN reprogramming, whereas a TNFα inhibitor promoted iN reprogramming, connecting the inflammatory responses to iN reprogramming. In addition, macrophages were induced to proliferate and mature by non-macrophage cells serving as feeders, which also supported up-regulation of TNFα in macrophages without virus transduction. Furthermore, the 2 inflammatory responses were repressed by the circadian regulator PER1 in macrophages, making reprogrammability dependent on time-of-day of virus transduction. Similar results were obtained with iPSC reprogramming, suggesting a wide occurrence of macrophage-mediated inhibition of cell reprogramming. This study uncovers mechanistic links between cell reprogramming, bystander inflammatory macrophages, and circadian rhythms, which are particularly relevant to in vivo reprogramming and organoid formation incorporating immune cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factor de Necrosis Tumoral alfa , Animales , Ratones , Diferenciación Celular , Reprogramación Celular , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Life Sci ; 334: 122224, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084671

RESUMEN

AIM: To understand the epigenetic role of curcumin, a natural polyphenolic compound extracted from the spice Curcuma longa in inducing cytotoxicity in two molecularly distinct ovarian cancer cell lines: PA1 and A2780. MATERIALS AND METHODS: An integrated mRNA-miRNA sequence analysis was performed to determine the curcumin-induced mRNA-miRNA regulatory networks in the induction of cytotoxicity. The miRNA-mRNA pathways, the miRNAs and their targets implicated in apoptosis, autophagy, DNA damage, and stemness markers were validated. Gene/miRNA expressions were validated using qPCR and protein expressions by western blotting. Curcumin-induced oncogenic /tumor-suppressor miRNAs were profiled utilising the oncomiRdb database. Similarly, the expressions of oncogenes/tumor suppressor genes were profiled and correlated with the TCGA ovarian cancer dataset. A dual luciferase assay was performed to investigate the interaction of miR-199a-5p to its direct target, DDR1. KEY FINDINGS: The expression of several miRNAs demonstrated an inverse correlation with their respective direct targets. In curcumin-treated PA1 cells, miR-335-5p target ATG5 (autophagic), and OCT4 (pluripotent gene) were downregulated, miR-32a target PTEN (tumor suppressor) was upregulated, miR-1285 target P53 (tumor suppressor) was upregulated, and both miR-182-5p and miR-503-3p target BCL2, were down-regulated. Contrastingly, in curcumin-treated A2780 cells, miR-181a-3p target ATG5, miR-30a-5p, and miR-216a target BECN1 (autophagic) were upregulated, and miR-129a-5p target BCL2 were downregulated. The reversal of the oncomiR/TSmiR profile revealed suppression of oncogenic processes by curcumin. Curcumin treatment induced a moderate cisplatin-sensitisation effect and impaired epithelial-to-mesenchymal transition (EMT) characteristics. Curcumin also regulated the miR-199a-5p/DDR1 axis with a decrease in collagen deposition. SIGNIFICANCE: The activity of curcumin is cell-type specific. Distinct miRNA regulatory networks were activated to induce multiple modes of cellular cytotoxicity in these ovarian cancer cells. This study further highlights the molecular mechanism of curcumin action in ovarian cancers establishing its candidacy as a promising drug candidate.


Asunto(s)
Curcumina , MicroARNs , Neoplasias Ováricas , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Curcumina/farmacología , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , ARN Mensajero/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Regulación Neoplásica de la Expresión Génica
3.
Front Genet ; 14: 1102114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091785

RESUMEN

Introduction: In India, OVCa is women's third most common and lethal cancer type, accounting for 6.7% of observed cancer incidences. The contribution of somatic mutations, aberrant expression of gene and splice forms in determining the cell fate, gene networks, tumour-specific variants, and the role of immune fraction infiltration have been proven essential in understanding tumorigenesis. However, their interplay in OVCa in a histotype-specific manner remains unclear in the Indian context. In the present study, we aimed to unravel the Indian population histotype-specific exome variants, differentially expressed gene modules, splice events and immune profiles of OVCa samples. Methods: We analysed 10 tumour samples across 4 ovarian cancer histotypes along with 2 normal patient samples. This included BCFtool utilities and CNVkit for exome, WGCNA and DESeq2 for obtaining differential module hub genes and dysregulated miRNA targets, CIBERSORTx for individual immune profiles and rMATS for tumour specific splice variants. Result: We identified population-specific novel mutations in Cancer Gene Census Tier1 and Tier2 genes. MUC16, MUC4, CIITA, and NCOR2 were among the most mutated genes, along with TP53. Transcriptome analysis showed significant overexpression of mutated genes MUC16, MUC4, and CIITA, whereas NCOR2 was downregulated. WGCNA revealed histotype-specific gene hubs and networks. Among the significant pathways, alteration in the immune system was one of the pathways, and immune profiling using CIBERSORTx revealed histotype-specific immune cell fraction. miRNA analysis revealed miR-200 family, miR-200a and miR-429 were upregulated in HGSOCs.Splice factor abrasion caused splicing perturbations, with the most abundant alternative splice event being exon skipping and the most spliced gene, SNHG17. Pathway analysis of spliced genes revealed translational elongation and Base excision repair as the pathways altered in OVCa. Conclusion: Integrated exome, transcriptome, and splicing patterns revealed different population-specific molecular signatures of ovarian cancer histotypes in the Indian Cohort.

4.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674887

RESUMEN

The intervertebral disc (IVD) aids in motion and acts to absorb energy transmitted to the spine. With little inherent regenerative capacity, degeneration of the intervertebral disc results in intervertebral disc disease, which contributes to low back pain and significant disability in many individuals. Increasing evidence suggests that IVD degeneration is a disease of the whole joint that is associated with significant inflammation. Moreover, studies show elevated macrophage accumulation within the IVD with increasing levels of disease severity; however, we still need to understand the roles, be they causative or consequential, of macrophages during the degenerative process. In this narrative review, we discuss hallmarks of IVD degeneration, showcase evidence of macrophage involvement during disc degeneration, and explore burgeoning research aimed at understanding the molecular pathways regulating macrophage functions during intervertebral disc degeneration.


Asunto(s)
Degeneración del Disco Intervertebral , Desplazamiento del Disco Intervertebral , Disco Intervertebral , Humanos , Degeneración del Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Inflamación/metabolismo , Desplazamiento del Disco Intervertebral/metabolismo , Macrófagos/metabolismo
5.
Front Cell Dev Biol ; 11: 1286011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274272

RESUMEN

Intervertebral disc (IVD) degeneration is a common pathological condition associated with low back pain. Recent evidence suggests that mesenchymal signaling cells (MSCs) promote IVD regeneration, but underlying mechanisms remain poorly defined. One postulated mechanism is via modulation of macrophage phenotypes. In this manuscript, we tested the hypothesis that MSCs produce trophic factors that alter macrophage subsets. To this end, we collected conditioned medium from human, bone marrow-derived STRO3+ MSCs. We then cultured human bone marrow-derived macrophages in MSC conditioned medium (CM) and performed single cell RNA-sequencing. Comparative analyses between macrophages cultured in hypoxic and normoxic MSC CM showed large overlap between macrophage subsets; however, we identified a unique hypoxic MSC CM-induced macrophage cluster. To determine if factors from MSC CM simulated effects of the anti-inflammatory cytokine IL-4, we integrated the data from macrophages cultured in hypoxic MSC CM with and without IL-4 addition. Integration of these data sets showed considerable overlap, demonstrating that hypoxic MSC CM simulates the effects of IL-4. Interestingly, macrophages cultured in normoxic MSC CM in the absence of IL-4 did not significantly contribute to the unique cluster within our comparison analyses and showed differential TGF-ß signaling; thus, normoxic conditions did not approximate IL-4. In addition, TGF-ß neutralization partially limited the effects of MSC CM. In conclusion, our study identified a unique macrophage subset induced by MSCs within hypoxic conditions and supports that MSCs alter macrophage phenotypes through TGF-ß-dependent mechanisms.

6.
Transl Oncol ; 15(1): 101280, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34801859

RESUMEN

Curcumin is known for its anticancer properties, but its clinical application is limited due to its poor bioavailability and chemical stability. In this study we report the curcumin derivative, ST03 (1,2-bis[(3E,5E)-3,5-bis[(2-chlorophenyl)methylene]-4-oxo-1-piperidyl]ethane-1,2-dione) exhibits ∼ 14 fold better bioavailability compared to curcumin and is detectable in plasma up to 12 h. ST03 induces ROS, activates the intrinsic apoptotic pathway as evident by disruption of mitochondrial membrane potential, and induction of proapoptotic proteins in ovarian cancer lines PA1 and A2780. ST03 also blocked the migration of ovarian cancer cells. ST03 exerted its antitumor effect in-vivo in the EAC mouse model by activating the intrinsic apoptotic pathway. Our findings demonstrate ST03, a curcumin derivative, with better bioavailability and stability with no discernable toxicity in vivo to be a promising drug candidate for anticancer therapies.

7.
Sci Rep ; 11(1): 23025, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34837026

RESUMEN

Ovarian cancers are among the fatal malignancies affecting women globally, mainly due to their metastatic and chemoresistant nature. In this study, we report a potent curcumin derivative ST09 effective against ovarian cancers. Prior in-vitro studies with ST09 drug showed cytotoxicity in tumorigenic cells compared to normal cells and in-vivo, significant tumor reduction was observed with least systemic toxicity. ST09 induced cytotoxicity in the ovarian cancer cells triggering mitochondria-mediated intrinsic apoptotic pathway. Delving deeper to understand the underlying molecular mechanisms involved in ovarian cancer pathogenesis, we identified an inverse correlation of miR-199a-5p with DDR1, a collagen receptor with receptor tyrosine kinase activity. The ST09 treatment in ovarian cancer cell lines resulted in the deregulation of the miR-199a-5p/DDR1 axis, conferring tumor-suppressive functions. We established DDR1 to be a direct target of miR-199a-5p and that ST09-induced DDR1 loss in these ovarian cancer cells resulted in the inactivation of its downstream MMP activation, migration, EMT, and prosurvival NF-κB pathway. Overall this study demonstrates ST09, a potent drug candidate for ovarian cancer treatment which exhibits anti-invasive and migrastatic properties.


Asunto(s)
Curcumina/análogos & derivados , Receptor con Dominio Discoidina 1/metabolismo , MicroARNs/metabolismo , Neoplasias Ováricas , Apoptosis , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Curcumina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metaloproteinasas de la Matriz/metabolismo , Transducción de Señal
8.
Molecules ; 25(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008036

RESUMEN

PURPOSE: Curcumin is known for its anticancer and migrastatic activity in various cancers, including breast cancer. Newer curcumin derivatives are being explored to overcome limitations of curcumin like low bioavailability, stability, and side effects due to its higher dose. In this study, the synthesis of ST09, a novel curcumin derivative, and its antiproliferative, cytotoxic, and migrastatic properties have been explored both in vitro and in vivo. METHODS: After ST09 synthesis, anticancer activity was studied by performing standard cytotoxicity assays namely, lactate dehydrogenase (LDH) release assay, 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyletrazolium bromide (MTT), and trypan blue exclusion assay. Annexin-FITC, cell cycle analysis using flow cytometry, and Western blotting were performed to elucidate cell death mechanisms. The effect on the inhibition of cell migration was studied by transwell migration assay. An EAC (Ehrlich Ascites carcinoma) induced mouse tumor model was used to study the effect of ST09 on tumor regression. Drug toxicity was measured using aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and flow-cytometry based lymphocyte count. Histological analysis was performed for assessment of any tissue injury post ST09 treatment. RESULTS: ST09 shows an approximate 100-fold higher potency than curcumin, its parent compound, on breast tumor cell lines MCF-7 and MDA-MB231. ST09 arrests the cell cycle in a cell type-specific manner and induces an intrinsic apoptotic pathway both in vitro and in vivo. ST09 inhibits migration by downregulating matrix metalloprotease 1,2 (MMP1,2) and Vimentin. In vivo, ST09 administration led to decreased tumor volume in a mouse allograft model by boosting immunity with no significant drug toxicity. CONCLUSION: ST09 exhibits antiproliferative and cytotoxic activity at nanomolar concentrations. It induces cell death by activation of the intrinsic pathway of apoptosis both in vitro and in vivo. It also inhibits migration and invasion. This study provides evidence that ST09 can potentially be developed as a novel antitumor drug candidate for highly metastatic and aggressive breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/farmacología , Progresión de la Enfermedad , Neoplasias Mamarias Animales/patología , Aloinjertos/efectos de los fármacos , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Curcumina/química , Modelos Animales de Enfermedad , Femenino , Humanos , Concentración 50 Inhibidora , Metaloproteinasas de la Matriz/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Pruebas de Toxicidad
9.
BMC Complement Altern Med ; 19(1): 273, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31638975

RESUMEN

BACKGROUND: Curcumin is known for its multitude of medicinal properties, including anti-cancer and migrastatic activity. Efforts to overcome poor bioavailability, stability, and side effects associated with the higher dose of curcumin has led to the development of newer derivatives of curcumin. Thus, the focus of this study is to screen novel curcumin derivatives, namely ST03 and ST08, which have not been reported before, for their cytotoxicity and migrastatic property on cancer cells. METHODS: Anti-cancer activity of ST03 and ST08 was carried out using standard cytotoxicity assays viz., LDH, MTT, and Trypan blue on both solid and liquid cancer types. Flow cytometric assays and western blotting was used to investigate the cell death mechanisms. Transwell migration assay was carried out to check for migrastatic properties of the compounds. RESULTS: Both the compounds, ST03 and ST08, showed ~ 100 fold higher potency on liquid and solid tumour cell lines compared to its parent compound curcumin. They induced cytotoxicity by activating the intrinsic pathway of apoptosis in the breast (MDA-MB-231) and ovarian cancer cell lines (PA-1) bearing metastatic and stem cell properties, respectively. Moreover, ST08 also showed inhibition on breast cancer cell migration by inhibiting MMP1 (matrix metalloproteinase 1). CONCLUSION: Both ST03 and ST08 exhibit anti-cancer activity at nanomolar concentration. They induce cell death by activating the intrinsic pathway of apoptosis. Also, they inhibit migration of the cancer cells by inhibiting MMP1 in breast cancer cells.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/fisiopatología , Movimiento Celular/efectos de los fármacos , Curcumina/química , Curcumina/farmacología , Neoplasias Ováricas/fisiopatología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Metaloproteinasa 1 de la Matriz/metabolismo , Estructura Molecular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo
10.
Int J Nanomedicine ; 14: 5257-5270, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31409988

RESUMEN

BACKGROUND: In recent years, green synthesized silver nanoparticles have been increasingly investigated for their anti-cancer potential. In the present study, we aimed at the biosynthesis of silver nanoparticles (AgNPs) using a curcumin derivative, ST06. Although, the individual efficacies of silver nanoparticles or curcumin derivatives have been studied previously, the synergistic cytotoxic effects of curcumin derivative and silver nanoparticles in a single nanoparticulate formulation have not been studied earlier specifically on animal models. This makes this study novel compared to the earlier synthesized curcumin derivative or silver nanoparticles studies. The aim of the study was to synthesize ST06 coated silver nanoparticles (ST06-AgNPs) using ST06 as both reducing and coating agent. METHODS: The synthesized nanoparticles AgNPs and ST06-AgNPs were characterised for the particle size distribution, morphology, optical properties and surface charge by using UV-visible spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). Elemental composition and structural properties were studied by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction spectroscopy (XRD). The presence of ST06 as capping agent was demonstrated by Fourier transform infrared spectroscopy (FTIR). RESULTS: The synthesized nanoparticles (ST06-AgNPs) were spherical and had a size distribution in the range of 50-100 nm. UV-Vis spectroscopy displayed a specific silver plasmon peak at 410 nm. The in vitro cytotoxicity effects of ST06 and ST06-AgNPs, as assessed by MTT assay, showed significant growth inhibition of human cervical cancer cell line (HeLa). In addition, studies carried out in EAC tumor-induced mouse model (Ehrlich Ascites carcinoma) using ST06-AgNPs, revealed that treatment of the animals with these nanoparticles resulted in a significant reduction in the tumor growth, compared to the control group animals. CONCLUSION: In conclusion, green synthesized ST06-AgNPs exhibited superior anti-tumor efficacy than the free ST06 or AgNPs with no acute toxicity under both in vitro and in vivo conditions. The tumor suppression is associated with the intrinsic apoptotic pathway. Together, the results of this study suggest that ST06-AgNPs could be considered as a potential option for the treatment of solid tumors.


Asunto(s)
Carcinoma de Ehrlich/patología , Curcumina/farmacología , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Plata/farmacología , Neoplasias del Cuello Uterino/patología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Células HeLa , Humanos , Ratones , Tamaño de la Partícula , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Distribución Tisular/efectos de los fármacos , Difracción de Rayos X
11.
Sci Rep ; 4: 6147, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25142835

RESUMEN

Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Extractos Vegetales/farmacología , Prunus/química , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA