RESUMEN
Ectotherms have peculiar relationships with microorganisms. For instance, bacteria are recovered from the blood and internal organs of healthy teleosts. However, the presence of microbial communities in the healthy teleost brain has not been proposed. Here, we report a living bacterial community in the brain of healthy salmonids with bacterial loads comparable to those of the spleen and 1000-fold lower than in the gut. Brain bacterial communities share >50% of their diversity with gut and blood bacterial communities. Using culturomics, we obtained 54 bacterial isolates from the brains of healthy trout. Comparative genomics suggests that brain bacteria may have adaptations for niche colonization and polyamine biosynthesis. In a natural system, Chinook salmon brain microbiomes shift from juveniles to reproductively mature adults. Our study redefines the physiological relationships between the brain and bacteria in teleosts. This symbiosis may endow salmonids with a direct mechanism to sense and respond to environmental microbes.
Asunto(s)
Bacterias , Encéfalo , Homeostasis , Microbiota , Salmonidae , Animales , Encéfalo/microbiología , Salmonidae/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , FilogeniaRESUMEN
Vaccination is the most effective measure to prevent disease outbreaks in fish aquaculture, with oral vaccine administration emerging as the most practical approach. However, oral vaccines face a notable limitation due to insufficient stimulation of the complex gut-associated lymphoid tissue caused by factors such as vaccine degradation, poor absorption, and recognition by the immune cells. An innovative solution to these limitations lies in the plant-based production of recombinant vaccines. Plant cells enable the production and targeted storage of recombinant vaccines in specific cell organelles which ensure superior protection from degradation and contain natural compounds acting as adjuvants. Our study explores the potential of barley (Hordeum vulgare), a globally significant cereal crop, for producing orally administered subunit vaccines against viral infections affecting economically important fish species in the Salmonidae and Cyprinidae families. Through Agrobacterium-mediated transformation of immature barley embryos, we have generated homozygous T2 generation of transgenic barley expressing recombinant antigens of spring viremia of carp virus and infectious salmon anaemia virus. The expression of these plant-based recombinant vaccines was confirmed by immunodetection, which was supported by fluorescence observation, specifically in the seed endosperm. The antigenicity of transgenic plant material containing recombinant antigens was evaluated using an intubation model of common carp (Cyprinus carpio), revealing a substantial upregulation of the immunoglobulin transcripts in both systemic and mucosal tissues over a period of 28 days following a single dose of transgenic antigens. Collectively, these results underscore the potential of barley-based recombinant vaccines for disease prevention in fish aquaculture.
RESUMEN
Introduction: Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. Methods: We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. Results: qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. Discussion: Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.
Asunto(s)
Aeromonas hydrophila , Carpas , Citocinas , Eritrocitos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Carpas/inmunología , Carpas/microbiología , Eritrocitos/inmunología , Eritrocitos/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Aeromonas hydrophila/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Fagocitosis/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Inmunidad InnataRESUMEN
The myxozoan parasite Tetracapsuloides bryosalmonae is the causative agent of proliferative kidney disease (PKD)-a disease of salmonid fishes, notably of the commercially farmed rainbow trout Oncorhynchus mykiss. Both wild and farmed salmonids are threatened by this virulent/deadly disease, a chronic immunopathology characterized by massive lymphocyte proliferation and hyperplasia, which manifests as swollen kidneys in susceptible hosts. Studying the immune response towards the parasite helps us understand the causes and consequences of PKD. While examining the B cell population during a seasonal outbreak of PKD, we unexpectedly detected the B cell marker immunoglobulin M (IgM) on red blood cells (RBCs) of infected farmed rainbow trout. Here, we studied the nature of this IgM and this IgM+ cell population. We verified the presence of surface IgM via parallel approaches: flow cytometry, microscopy, and mass spectrometry. The levels of surface IgM (allowing complete resolution of IgM- RBCs from IgM+ RBCs) and frequency of IgM+ RBCs (with up to 99% of RBCs being positive) have not been described before in healthy fishes nor those suffering from disease. To assess the influence of the disease on these cells, we profiled the transcriptomes of teleost RBCs in health and disease. Compared to RBCs originating from healthy fish, PKD fundamentally altered RBCs in their metabolism, adhesion, and innate immune response to inflammation. In summary, RBCs play a larger role in host immunity than previously appreciated. Specifically, our findings indicate that the nucleated RBCs of rainbow trout interact with host IgM and contribute to the immune response in PKD.
Asunto(s)
Enfermedades Renales , Oncorhynchus mykiss , Animales , Eritrocitos , Linfocitos B , Inmunoglobulina MRESUMEN
Poly lactic-co-glycolic acid (PLGA) particles safely and effectively deliver pharmaceutical ingredients, with many applications approved for clinical use in humans. In fishes, PLGA particles are being considered as carriers of therapeutic drugs and vaccine antigens. However, existing studies focus mainly on vaccine antigens, the endpoint immune responses to these (e.g., improved antibody titres), without deeper understanding of whether fishes react to the carrier. To test whether or not PLGA are recognized by or interact at all with the immune system of a teleost fish, we prepared, characterized and injected PLGA microparticles intraperitoneally into common carp. The influx, phenotype of inflammatory leukocytes, and their capacity to produce reactive oxygen species and phagocytose PLGA microparticles were tested by flow cytometry, qPCR, and microscopy. PLGA microparticles were indeed recognized. However, they induced only transient recruitment of inflammatory leukocytes that was resolved 4 days later whereas only the smallest µm-sized particles were phagocytosed. The overall response resembled that described in mammals against foreign materials. Given the similarities between our findings and those described in mammals, PLGA particles can be adapted to play a dual role as both antigen and drug carriers in fishes, depending on the administered dose and their design.
Asunto(s)
Carpas , Vacunas , Animales , Antígenos , Glicoles , Inmunidad , Ácido Láctico , Mamíferos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Vacunas/farmacologíaRESUMEN
In poikilothermic vertebrates, seasonality influences different immunological parameters such as leukocyte numbers, phagocytic activity, and antibody titers. This phenomenon has been described in different teleost species, with immunological parameters peaking during warmer months and decreased levels during winter. In this study, the cellular immune responses of rainbow trout (Oncorhynchus mykiss) kept under constant photoperiod and water temperature against intraperitoneally injected Aeromonas salmonicida during the summer and winter were investigated. The kinetics of different leukocyte subpopulations from peritoneal cavity, spleen, and head kidney in response to the bacteria was measured by flow cytometry. Furthermore, the kinetics of induced A. salmonicida-specific antibodies was evaluated by ELISA. Despite maintaining the photoperiod and water temperature as constant, different cell baselines were detected in all organs analyzed. During the winter months, B- and T-cell responses were decreased, contrary to what was observed during summer months. However, the specific antibody titers were similar between the two seasons. Natural antibodies, however, were greatly increased 12 h post-injection only during the wintertime. Altogether, our results suggest a bias toward innate immune responses and potential lymphoid immunosuppression in the wintertime in trout. These seasonal differences, despite photoperiod and water temperature being kept constant, suggest an internal inter-seasonal or circannual clock controlling the immune system and physiology of this teleost fish.
RESUMEN
Myxozoans are a diverse group of microscopic cnidarian parasites and some representatives are associated with important diseases in fish, in both marine and freshwater aquaculture systems. Research on myxozoans has been largely hampered by the inability to isolate myxozoan parasites from their host tissues. In this study, we developed and optimized a method to isolate the myxozoan proliferative stages of different size and cellularity from fish blood, using DEAE-cellulose ion exchange chromatography. We optimized several parameters and obtained 99-100% parasite purity, as well as high survival and infectivity. Using polyclonal pan-carp blood cell-specific antibodies, we further developed a rapid cytometric assay for quantification of the proliferative stages, not only in highly concentrated DEAE-C isolates but also in dilute conditions in full blood. Early developmental stages of myxozoans are key to parasite proliferation, establishment, and pathology in their hosts. The isolation of these stages not only opens new possibilities for in vivo and in vitro studies, but also for obtaining purified DNA and protein extracts for downstream analyses. Hence, we provide a long-desired tool that will advance the functional research into the mechanisms of host exploitation and immune stimulation/evasion in this group, which could contribute greatly to the development of therapeutic strategies against myxozoans.
Asunto(s)
Carpas , Enfermedades de los Peces , Myxozoa , Animales , Anticuerpos , Acuicultura , Genómica , Myxozoa/genéticaRESUMEN
The immune system is a complex and sophisticated biological system, spanning multiple levels of complexity, from the molecular level to that of tissue. Our current understanding of its function and complexity, of the heterogeneity of leukocytes, is a result of decades of concentrated efforts to delineate cellular markers using conventional methods of antibody screening and antigen identification. In mammalian models, this led to in-depth understanding of individual leukocyte subsets, their phenotypes, and their roles in health and disease. The field was further propelled forward by the development of single-cell (sc) RNA-seq technologies, offering an even broader and more integrated view of how cells work together to generate a particular response. Consequently, the adoption of scRNA-seq revealed the unexpected plasticity and heterogeneity of leukocyte populations and shifted several long-standing paradigms of immunology. This review article highlights the unprecedented opportunities offered by scRNA-seq technology to unveil the individual contributions of leukocyte subsets and their crosstalk in generating the overall immune responses in bony fishes. Single-cell transcriptomics allow identifying unseen relationships, and formulating novel hypotheses tailored for teleost species, without the need to rely on the limited number of fish-specific antibodies and pre-selected markers. Several recent studies on single-cell transcriptomes of fish have already identified previously unnoticed expression signatures and provided astonishing insights into the diversity of teleost leukocytes and the evolution of vertebrate immunity. Without a doubt, scRNA-seq in tandem with bioinformatics tools and state-of-the-art methods, will facilitate studying the teleost immune system by not only defining key markers, but also teaching us about lymphoid tissue organization, development/differentiation, cell-cell interactions, antigen receptor repertoires, states of health and disease, all across time and space in fishes. These advances will invite more researchers to develop the tools necessary to explore the immunology of fishes, which remain non-conventional animal models from which we have much to learn.
Asunto(s)
Peces/genética , Peces/inmunología , Leucocitos/inmunología , Leucocitos/metabolismo , RNA-Seq , Análisis de la Célula Individual , Animales , Inmunidad , Análisis de la Célula Individual/métodosRESUMEN
Diplonemids are one of the most abundant groups of heterotrophic planktonic microeukaryotes in the world ocean and, thus, are likely to play an essential role in marine ecosystems. So far, only few species have been introduced into a culture, allowing basic studies of diplonemid genetics, morphology, ultrastructure, metabolism, as well as endosymbionts. However, it remains unclear whether these heterotrophic flagellates are parasitic or free-living and what are their predominant dietary patterns and preferred food items. Here we show that cultured diplonemids, maintained in an organic-rich medium as osmotrophs, can gradually switch to bacterivory as a sole food resource, supporting positive growth of their population, even when fed with a low biovolume of bacteria. We further observed remarkable differences in species-specific feeding patterns, size-selective grazing preferences, and distinct feeding strategies. Diplonemids can discriminate between low-quality food items and inedible particles, such as latex beads, even after their ingestion, by discharging them in the form of large waste vacuoles. We also detected digestion-related endogenous autofluorescence emitted by lysosomes and the activity of a melanin-like material. We present the first evidence that these omnipresent protists possess an opportunistic lifestyle that provides a considerable advantage in the generally food resource-limited marine environments.
Asunto(s)
Ecosistema , Eucariontes , Bacterias/genética , Conducta Alimentaria , PlanctonRESUMEN
Inadequate oxygen saturation can induce stress responses in fish and further affect their immunity. Pikeperch, recently introduced in intensive aquaculture, is suggested to be reared at nearly 100% DO (dissolved oxygen), yet this recommendation can be compromised by several factors including the water temperature, stocking densities or low circulation. Herein, we aimed to investigate the effect of low oxygen saturation of 40% DO (±3.2 mg/L) over 28 days on pikeperch farmed in recirculating aquaculture systems. The obtained data suggest that-although the standard blood and health parameters did not reveal any significant differences at any timepoint-the flow cytometric analysis identified a slightly decreased proportion of lymphocytes in the HK (head kidney) of fish exposed to hypoxia. This has been complemented by marginally downregulated expression of investigated immune and stress genes in HK and liver (including FTH1, HIF1A and NR3C1). Additionally, in the model of acute peritoneal inflammation induced with inactivated Aeromonas hydrophila, we observed a striking dichotomy in the sensitivity to the low DO between innate and adaptive immunity. Thus, while the mobilization of myeloid cells from HK to blood, spleen and peritoneal cavity, underlined by changes in the expression of key proinflammatory cytokines (including MPO, IL1B and TNF) was not influenced by the low DO, hypoxia impaired the influx of lymphocytes to the peritoneal niche in the later phases of the immune reaction. Taken together, our data suggest high robustness of pikeperch towards the low oxygen saturation and further encourage its introduction to the intensive aquaculture systems.
RESUMEN
Myxozoans are a diverse group of cnidarian parasites, including important pathogens in different aquaculture species, without effective legalized treatments for fish destined for human consumption. We tested the effect of natural feed additives on immune parameters of common carp and in the course of a controlled laboratory infection with the myxozoan Sphaerospora molnari. Carp were fed a base diet enriched with 0.5% curcumin or 0.12% of a multi-strain yeast fraction, before intraperitoneal injection with blood stages of S. molnari. We demonstrate the impact of these treatments on respiratory burst, phagocytosis, nitric oxide production, adaptive IgM+ B cell responses, S. molnari-specific antibody titers, and on parasite numbers. Both experimental diets enriched B cell populations prior to infection and postponed initial parasite proliferation in the blood. Curcumin-fed fish showed a decrease in reactive oxygen species, nitric oxide production and B cell density at late-stage infection, likely due to its anti-inflammatory properties, favoring parasite propagation. In contrast, multi-strain yeast fraction (MsYF)-fed fish harbored the highest S. molnari-specific antibody titer, in combination with the overall lowest parasite numbers. The results demonstrate that yeast products can be highly beneficial for the outcome of myxozoan infections and could be used as effective feed additives in aquaculture.
RESUMEN
The objective of the present study is to identify and evaluate informative indicators for the welfare of rainbow trout exposed to (A) a water temperature of 27 °C and (B) a stocking density of 100 kg/m3 combined with a temperature of 27 °C. The spleen-somatic and condition index, haematocrit and the concentrations of haemoglobin, plasma cortisol and glucose revealed non-significant differences between the two stress groups and the reference group 8 days after the onset of the experiments. The transcript abundance of almost 1,500 genes was modulated at least twofold in in the spleen of rainbow trout exposed to a critical temperature alone or a critical temperature combined with crowding as compared to the reference fish. The number of differentially expressed genes was four times higher in trout that were simultaneously challenged with high temperature and crowding, compared to trout challenged with high temperature alone. Based on these sets of differentially expressed genes, we identified unique and common tissue- and stress type-specific pathways. Furthermore, our subsequent immunologic analyses revealed reduced bactericidal and inflammatory activity and a significantly altered blood-cell composition in challenged versus non-challenged rainbow trout. Altogether, our data demonstrate that heat and overstocking exert synergistic effects on the rainbow trout's physiology, especially on the immune system.
Asunto(s)
Aglomeración , Proteínas de Peces/metabolismo , Respuesta al Choque Térmico , Sistema Inmunológico/inmunología , Oncorhynchus mykiss/inmunología , Transcriptoma , Animales , Biología Computacional , Proteínas de Peces/genética , Perfilación de la Expresión Génica , Glucosa/metabolismo , Hemoglobinas/análisis , Hidrocortisona/sangre , Oncorhynchus mykiss/genética , Bazo/inmunología , Bazo/metabolismoRESUMEN
AIMS: As the most abundant cell population in the blood, erythrocytes represent an attractive source of nutrients and a protective niche to a number of pathogens. Previously, we observed the attachment of the myxozoan parasite Sphaerospora molnari to erythrocytes of its host, common carp (Cyprinus carpio), raising a number of questions about the nature of this interaction. METHODS AND RESULTS: We elucidated the impact of S molnari on the number of erythrocytes in healthy and immunocompromised fish, over a period of 6 weeks. While we observed only a mild decrease in RBC numbers in healthy individuals, we witnessed gradual and finally severe haemolytic anaemia in immunosuppressed fish. Accompanying this overt loss was increased erythropoiesis as represented by an increase of erythroblasts in the blood. In vitro, we demonstrated the uptake of host proteins from CFSE-labelled erythrocytes, ultimately inducing death of host RBCs, likely for nutrient gain of the parasite. Nevertheless, the results do not exclude a possible role of erythrocyte-derived proteins in immune evasion. CONCLUSION: Overall, the obtained data provide first evidence for the previously unknown appetite of myxozoan parasites for host erythrocytes and create an important framework for future investigations into the molecular mechanisms underlining this interaction.
Asunto(s)
Eritrocitos/parasitología , Conducta Alimentaria/fisiología , Myxozoa/fisiología , Anemia Hemolítica/parasitología , Animales , Carpas/parasitología , Eritropoyesis/fisiología , Enfermedades de los Peces/parasitología , FilogeniaRESUMEN
BACKGROUND: Sphaerospora molnari is a myxozoan parasite causing skin and gill sphaerosporosis in common carp (Cyprinus carpio) in central Europe. For most myxozoans, little is known about the early development and the expansion of the infection in the fish host, prior to spore formation. A major reason for this lack of information is the absence of laboratory model organisms, whose life-cycle stages are available throughout the year. RESULTS: We have established a laboratory infection model for early proliferative stages of myxozoans, based on separation and intraperitoneal injection of motile and dividing S. molnari stages isolated from the blood of carp. In the present study we characterize the kinetics of the presporogonic development of S. molnari, while analyzing cellular host responses, cytokine and systemic immunoglobulin expression, over a 63-day period. Our study shows activation of innate immune responses followed by B cell-mediated immune responses. We observed rapid parasite efflux from the peritoneal cavity (< 40 hours), an initial covert infection period with a moderate proinflammatory response for about 1-2 weeks, followed by a period of parasite multiplication in the blood which peaked at 28 days post-infection (dpi) and was associated with a massive lymphocyte response. Our data further revealed a switch to a massive anti-inflammatory response (up to 1456-fold expression of il-10), a strong increase in the expression of IgM transcripts and increased number of IgM+ B lymphocytes, which produce specific antibodies for the elimination of most of the parasites from the fish at 35 dpi. However, despite the presence of these antibodies, S. molnari invades the liver 42 dpi, where an increase in parasite cell number and indistinguishable outer cell membranes are indicative of effective exploitation and disguise mechanisms. From 49 dpi onwards, the acute infection changes to a chronic one, with low parasite numbers remaining in the fish. CONCLUSIONS: To our knowledge, this is the first time myxozoan early development and immune modulation mechanisms have been analyzed along with innate and adaptive immune responses of its fish host, in a controlled laboratory system. Our study adds important information on host-parasite interaction and co-evolutionary adaptation of early metazoans (Cnidaria) with basic vertebrate (fish) immune systems and the evolution of host adaptation and parasite immune evasion strategies.
Asunto(s)
Carpas/inmunología , Carpas/parasitología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Myxozoa/inmunología , Enfermedades Parasitarias en Animales/inmunología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Riñón Cefálico/metabolismo , Interacciones Huésped-Parásitos , Inmunidad Celular , Inmunidad Humoral , Myxozoa/crecimiento & desarrollo , Enfermedades Parasitarias en Animales/parasitología , EsporasRESUMEN
The daily change of light and dark periods influences different physiological processes including feeding, resting and locomotor activity. Previously, several studies on mammalian models revealed a strong link between day-night rhythms and key immunological parameters. Since teleost fishes possess innate and adaptive immune responses like those observed in higher vertebrates, we aimed to elucidate how changes in light-dark cycles shape the immune system of fish. Using the rainbow trout laboratory model, we investigated the link between diurnal rhythms and immune competence of fish. Initially, the cell composition and phagocytic activity of leukocytes was analyzed in the circulation as well as in the head kidney, the functional ortholog of mammalian bone marrow. Once the baseline was established, we evaluated the ability of fish to respond to a bacterial stimulus, as well as the changes in antimicrobial activity of the serum. Our results suggest increased immune competence during the day, manifested by the higher presence of myeloid cells in the circulation; increased overall phagocytic activity; and higher capacity of the sera to inhibit the growth of Aeromonas salmonicida. Notably, our flow cytometric analysis identified the myeloid cells as the major population influenced by the time of day, whereas IgM+ B cells and thrombocytes did not vary in a significant manner. Interestingly, the presence of myeloid cells in blood and head kidney followed complementary trends. Thus, while we observed the highest number of myeloid cells in the blood during early morning, we witnessed a reverse trend in the head kidney, suggesting a homing of myeloid cells to reservoir niches with the onset of the dark phase. Further, the presence of myeloid cells was mirrored in the expression of the proinflammatory marker tnfa as well as in the number of leukocytes recruited to the peritoneal cavity in the peritonitis model of inflammation. Overall, the data suggest a connection between diurnal rhythms and the immune response of rainbow trout and highlight the relevance of rhythmicity and its influence on experimental work in the field of fish chronoimmunology.
RESUMEN
Crimean-Congo hemorrhagic fever virus (CCHFV) circulates in many countries of Asia, Africa, and Europe. CCHFV can cause a severe hemorrhagic fever in humans with case-fatality rates of up to 80%. CCHF is considered to be one of the major emerging diseases spreading to and within Europe. Ticks of the genus Hyalomma function as vector as well as natural reservoir of CCHFV. Ticks feed on various domestic animals (e.g. cattle, sheep, goats) and on wildlife (e.g. hares, hedgehogs). Those animal species play an important role in the life cycle of the ticks as well as in amplification of CCHFV. Here we present a competitive ELISA (cELISA) for the species-independent detection of CCHFV-specific antibodies. For this purpose nucleocapsid (N) protein specific monoclonal antibodies (mAbs) were generated against an Escherichia coli (E. coli) expressed CCHFV N-protein. Thirty-three mAbs reacted with homologous and heterologous recombinant CCHFV antigens in ELISA and Western blot test and 20 of those 33 mAbs reacted additionally in an immunofluorescence assay with eukaryotic cells expressing the N-protein. Ten mAbs were further characterized in a prototype of the cELISA and nine of them competed with positive control sera of bovine origin. The cELISA was established by using the mAb with the strongest competition. For the validation, 833 sera from 12 animal species and from humans were used. The diagnostic sensitivity and specificity of the cELISA was determined to be 95% and 99%, respectively, and 2% of the sera gave inconclusive results. This cELISA offers the possibility for future large-scale screening approaches in various animal species to evaluate their susceptibility to CCHFV infection and to identify and monitor the occurrence of CCHFV.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Fiebre Hemorrágica de Crimea/diagnóstico , Proteínas de la Nucleocápside/inmunología , África/epidemiología , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Antígenos Virales/genética , Antígenos Virales/inmunología , Asia/epidemiología , Bovinos , Escherichia coli/genética , Europa (Continente)/epidemiología , Técnica del Anticuerpo Fluorescente , Cabras , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/inmunología , Fiebre Hemorrágica de Crimea/veterinaria , Humanos , Inmunoglobulina G/sangre , Proteínas de la Nucleocápside/genética , ARN Viral , Sensibilidad y Especificidad , Ovinos , Garrapatas/virologíaRESUMEN
Toll-like receptors (TLRs) interact directly with particular pathogenic structures and are thus highly important to innate immunity. The present manuscript characterises a suite of 14 TLRs in maraena whitefish (Coregonus maraena), a salmonid species with increasing importance for aquaculture. Whitefish TLRs were structurally and evolutionary analysed. The results revealed a close relationship with TLRs from salmonid fish species rainbow trout and Atlantic salmon. Profiling the baseline expression of TLR genes in whitefish indicated that mainly members of the TLR11 family were highly expressed across all investigated tissues. A stimulation model with inactivated Aeromonas salmonicida was used to induce inflammation in the peritoneal cavity of whitefish. This bacterial challenge induced the expression of pro-inflammatory cytokine genes and evoked a strong influx of granulated cells of myeloid origin into the peritoneal cavity. As a likely consequence, the abundance of TLR-encoding transcripts increased moderately in peritoneal cells, with the highest levels of transcripts encoding non-mammalian TLR22a and a soluble TLR5 variant. In the course of inflammation, the proportion of granulated cells increased in peripheral blood accompanied by elevated TLR copy numbers in spleen and simultaneously reduced TLR copy numbers in head kidney at day 3 post-stimulation. Altogether, the present study provides in-vivo evidence for relatively modest TLR response patterns, but marked trafficking of myeloid cells as an immunophysiological consequence of A. salmonicida inflammation in whitefish. The present results contribute to improved understanding of the host-pathogen interaction in salmonid fish.
Asunto(s)
Proteínas de Peces/genética , Forunculosis/genética , Infecciones por Bacterias Gramnegativas/veterinaria , Salmonidae , Receptores Toll-Like/genética , Aeromonas salmonicida/fisiología , Animales , Evolución Molecular , Proteínas de Peces/metabolismo , Forunculosis/inmunología , Forunculosis/microbiología , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Inmunidad Innata/genética , Filogenia , Salmonidae/clasificación , Receptores Toll-Like/metabolismoRESUMEN
Tetrapods contain a single CD4 coreceptor with four Ig domains that likely arose from a primordial two-domain ancestor. Notably, teleost fish contain two CD4 genes. Like tetrapod CD4, CD4-1 of rainbow trout includes four Ig domains, whereas CD4-2 contains only two. Because CD4-2 is reminiscent of the prototypic two-domain CD4 coreceptor, we hypothesized that by characterizing the cell types bearing CD4-1 and CD4-2, we would shed light into the evolution and primordial roles of CD4-bearing cells. Using newly established mAbs against CD4-1 and CD4-2, we identified two bona-fide CD4(+) T cell populations: a predominant lymphocyte population coexpressing surface CD4-1 and CD4-2 (CD4 double-positive [DP]), and a minor subset expressing only CD4-2 (CD4-2 single-positive [SP]). Although both subsets produced equivalent levels of Th1, Th17, and regulatory T cell cytokines upon bacterial infection, CD4-2 SP lymphocytes were less proliferative and displayed a more restricted TCRß repertoire. These data suggest that CD4-2 SP cells represent a functionally distinct population and may embody a vestigial CD4(+) T cell subset, the roles of which reflect those of primeval CD4(+) T cells. Importantly, we also describe the first CD4(+) monocyte/macrophage population in a nonmammalian species. Of all myeloid subsets, we found the CD4(+) population to be the most phagocytic, whereas CD4(+) lymphocytes lacked this capacity. This study fills in an important gap in the knowledge of teleost CD4-bearing leukocytes, thus revealing critical insights into the evolutionary origins and primordial roles of CD4(+) lymphocytes and CD4(+) monocytes/macrophages.
Asunto(s)
Antígenos CD4/inmunología , Linfocitos T CD4-Positivos/inmunología , Macrófagos/inmunología , Células Mieloides/inmunología , Oncorhynchus mykiss/inmunología , Animales , Evolución Biológica , Monocitos/inmunologíaRESUMEN
Mucosal surfaces are the main route of entry for pathogens in all living organisms. In the case of teleost fish, mucosal surfaces cover the vast majority of the animal. As these surfaces are in constant contact with the environment, fish are perpetually exposed to a vast number of pathogens. Despite the potential prevalence and variety of pathogens, mucosal surfaces are primarily populated by commensal non-pathogenic bacteria. Indeed, a fine balance between these two populations of microorganisms is crucial for animal survival. This equilibrium, controlled by the mucosal immune system, maintains homeostasis at mucosal tissues. Teleost fish possess a diffuse mucosa-associated immune system in the intestine, with B cells being one of the main responders. Immunoglobulins produced by these lymphocytes are a critical line of defense against pathogens and also prevent the entrance of commensal bacteria into the epithelium. In this review we will summarize recent literature regarding the role of B-lymphocytes and immunoglobulins in gut immunity in teleost fish, with specific focus on immunoglobulin isotypes and the microorganisms, pathogenic and non-pathogenic that interact with the immune system.
Asunto(s)
Subgrupos de Linfocitos B/inmunología , Linfocitos B/inmunología , Peces/inmunología , Inmunoglobulinas/metabolismo , Infecciones/inmunología , Intestinos/inmunología , Microbiota , Animales , Evolución Biológica , Proteínas de Peces , Homeostasis , Interacciones Huésped-Patógeno , Inmunidad MucosaRESUMEN
Adverse life circumstances evoke a common "conserved transcriptional response to adversity" (CTRA) in mammalian leukocytes. To investigate whether this pattern is preserved in lower vertebrates, maraena whitefish (Coregonus maraena) were exposed for 9 days to different stocking densities: ~10 kg/m3 (low density), ~33 kg/m3 (moderate), ~60 kg/m3 (elevated), and ~100 kg/m3 (high). Transcriptome profiling in the liver and kidney of individuals from each group suggested that crowding conditions activate stress-related signaling and effector pathways. Remarkably, about one-quarter of the genes differentially expressed under crowding conditions were involved in the activation of immune pathways such as acute-phase response and interleukin/TNF signaling attended by the simultaneous reduction of antiviral potency. Network analysis confirmed the complex interdigitation of immune- and stress-relevant pathways with interleukin-1 playing a central role. Antibody-based techniques revealed remarkable changes in the blood composition of whitefish and demonstrated the correlation between increasing stocking densities and elevated number of myeloid cells together with the increased phagocytic activity of peripheral blood leukocytes. In line with current studies in mammals, we conclude that crowding stress triggers in whitefish hallmarks of a CTRA, indicating that the stress-induced molecular mechanisms regulating the immune responses not only are conserved within mammals but were established earlier in evolution.