Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 31(3): 728-751, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34913537

RESUMEN

In vivo imaging of model organisms is heavily reliant on fluorescent proteins with high intracellular brightness. Here we describe a practical method for rapid optimization of fluorescent proteins via directed molecular evolution in cultured mammalian cells. Using this method, we were able to perform screening of large gene libraries containing up to 2 × 107 independent random genes of fluorescent proteins expressed in HEK cells, completing one iteration of directed evolution in a course of 8 days. We employed this approach to develop a set of green and near-infrared fluorescent proteins with enhanced intracellular brightness. The developed near-infrared fluorescent proteins demonstrated high performance for fluorescent labeling of neurons in culture and in vivo in model organisms such as Caenorhabditis elegans, Drosophila, zebrafish, and mice. Spectral properties of the optimized near-infrared fluorescent proteins enabled crosstalk-free multicolor imaging in combination with common green and red fluorescent proteins, as well as dual-color near-infrared fluorescence imaging. The described method has a great potential to be adopted by protein engineers due to its simplicity and practicality. We also believe that the new enhanced fluorescent proteins will find wide application for in vivo multicolor imaging of small model organisms.


Asunto(s)
Evolución Molecular Dirigida , Pez Cebra , Animales , Línea Celular , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mamíferos/genética , Ratones , Neuronas/metabolismo , Imagen Óptica , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Sci Rep ; 10(1): 15128, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934267

RESUMEN

Here we report bisphenol derivatives of fluorene (BDFs) as a new type of chemical probes targeting a histone-like HU protein, a global regulator of bacterial nucleoids, via its dimerization interface perturbation. BDFs were identified by virtual screening and molecular docking that targeted the core of DNA-binding ß-saddle-like domain of the HU protein from Spiroplasma melliferum. However, NMR spectroscopy, complemented with molecular dynamics and site-directed mutagenesis, indicated that the actual site of the inhibitors' intervention consists of residues from the α-helical domain of one monomer and the side portion of the DNA-binding domain of another monomer. BDFs inhibited DNA-binding properties of HU proteins from mycoplasmas S. melliferum, Mycoplasma gallicepticum and Escherichia coli with half-maximum inhibitory concentrations in the range between 5 and 10 µM. In addition, BDFs demonstrated antimicrobial activity against mycoplasma species, but not against E. coli, which is consistent with the compensatory role of other nucleoid-associated proteins in the higher bacteria. Further evaluation of antimicrobial effects of BDFs against various bacteria and viruses will reveal their pharmacological potential, and the allosteric inhibition mode reported here, which avoids direct competition for the binding site with DNA, should be considered in the development of small molecule inhibitors of nucleoid-associated proteins as well as other types of DNA-binding multimeric proteins.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Fluorenos/farmacología , Histonas/química , Simulación del Acoplamiento Molecular , Conformación Proteica en Hélice alfa , Spiroplasma/crecimiento & desarrollo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Fluorenos/química , Ensayos Analíticos de Alto Rendimiento , Simulación de Dinámica Molecular , Spiroplasma/efectos de los fármacos , Spiroplasma/metabolismo
3.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344594

RESUMEN

Genetically encoded calcium indicators (GECIs) have become a widespread tool for the visualization of neuronal activity. As compared to popular GCaMP GECIs, the FGCaMP indicator benefits from calmodulin and M13-peptide from the fungi Aspergillus niger and Aspergillus fumigatus, which prevent its interaction with the intracellular environment. However, FGCaMP exhibits a two-phase fluorescence behavior with the variation of calcium ion concentration, has moderate sensitivity in neurons (as compared to the GCaMP6s indicator), and has not been fully characterized in vitro and in vivo. To address these limitations, we developed an enhanced version of FGCaMP, called FGCaMP7. FGCaMP7 preserves the ratiometric phenotype of FGCaMP, with a 3.1-fold larger ratiometric dynamic range in vitro. FGCaMP7 demonstrates 2.7- and 8.7-fold greater photostability compared to mEGFP and mTagBFP2 fluorescent proteins in vitro, respectively. The ratiometric response of FGCaMP7 is 1.6- and 1.4-fold higher, compared to the intensiometric response of GCaMP6s, in non-stimulated and stimulated neuronal cultures, respectively. We reveal the inertness of FGCaMP7 to the intracellular environment of HeLa cells using its truncated version with a deleted M13-like peptide; in contrast to the similarly truncated variant of GCaMP6s. We characterize the crystal structure of the parental FGCaMP indicator. Finally, we test the in vivo performance of FGCaMP7 in mouse brain using a two-photon microscope and an NVista miniscope; and in zebrafish using two-color ratiometric confocal imaging.


Asunto(s)
Calcio/metabolismo , Expresión Génica , Imagen Molecular , Neuronas/metabolismo , Potenciales de Acción , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Hongos/genética , Genes Reporteros , Células HeLa , Humanos , Ratones , Microscopía Fluorescente , Modelos Moleculares , Imagen Molecular/métodos , Neuronas/citología , Conformación Proteica , Ingeniería de Proteínas , Relación Estructura-Actividad , Corteza Visual/fisiología
4.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121243

RESUMEN

Green fluorescent genetically encoded calcium indicators (GECIs) are the most popular tool for visualization of calcium dynamics in vivo. However, most of them are based on the EGFP protein and have similar molecular brightnesses. The NTnC indicator, which is composed of the mNeonGreen fluorescent protein with the insertion of troponin C, has higher brightness as compared to EGFP-based GECIs, but shows a limited inverted response with an ΔF/F of 1. By insertion of a calmodulin/M13-peptide pair into the mNeonGreen protein, we developed a green GECI called NCaMP7. In vitro, NCaMP7 showed positive response with an ΔF/F of 27 and high affinity (Kd of 125 nM) to calcium ions. NCaMP7 demonstrated a 1.7-fold higher brightness and similar calcium-association/dissociation dynamics compared to the standard GCaMP6s GECI in vitro. According to fluorescence recovery after photobleaching (FRAP) experiments, the NCaMP7 design partially prevented interactions of NCaMP7 with the intracellular environment. The NCaMP7 crystal structure was obtained at 1.75 Å resolution to uncover the molecular basis of its calcium ions sensitivity. The NCaMP7 indicator retained a high and fast response when expressed in cultured HeLa and neuronal cells. Finally, we successfully utilized the NCaMP7 indicator for in vivo visualization of grating-evoked and place-dependent neuronal activity in the visual cortex and the hippocampus of mice using a two-photon microscope and an NVista miniscope, respectively.


Asunto(s)
Calcio/metabolismo , Técnicas Genéticas , Proteínas Fluorescentes Verdes/metabolismo , Animales , Conducta Animal , Células Cultivadas , Cristalografía por Rayos X , Fluorometría , Células HeLa , Hipocampo/metabolismo , Humanos , Indicadores y Reactivos , Cinética , Ratones Endogámicos C57BL , Modelos Moleculares , Neuronas/metabolismo , Fotones , Corteza Visual/fisiología , Vigilia
5.
J Biomol Struct Dyn ; 38(16): 4868-4882, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31724904

RESUMEN

Oligopeptidases B (OpdBs) are trypsin-like peptidases from protozoa and bacteria that belong to the prolyl oligopeptidase (POP) family. All POPs consist of C-terminal catalytic domain and N-terminal ß-propeller domain and exist in two major conformations: closed (active), where the domains and residues of the catalytic triad are positioned close to each other, and open (non-active), where two domains and residues of the catalytic triad are separated. The interdomain interface, particularly, one of its salt bridges (SB1), plays a role in the transition between these two conformations. However, due to double amino acid substitution (E/R and R/Q), this functionally important SB1 is absent in γ-proteobacterial OpdBs including peptidase from Serratia proteamaculans (PSP). In this study, molecular dynamics was used to analyze inter- and intradomain interactions stabilizing PSP in the closed conformation, in which catalytic H652 is located close to other residues of the catalytic triad. The 3D models of either wild-type PSP or of mutant PSPs carrying activating mutations E125A and D649A in complexes with peptide-substrates were subjected to the analysis. The mechanism that regulates transition of H652 from active to non-active conformation upon domain separation in PSP and other γ-proteobacterial OpdB was proposed. The complex network of polar interactions within H652-loop/C-terminal α-helix and between these areas and ß-propeller domain, established in silico, was in a good agreement with both previously published results on the effects of single-residue mutations and new data on the effects of the activating mutations on each other and on the low active mutant PSP-K655A.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Serratia , Mutagénesis Sitio-Dirigida , Péptido Hidrolasas
6.
J Biomol Struct Dyn ; 38(10): 2939-2944, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31347457

RESUMEN

The pre-crystallization solution of the transaminase from Thermobaculum terrenum (TaTT) has been studied by small-angle X-ray scattering (SAXS). Regular changes in the oligomeric composition of the protein were observed after the addition of the precipitant. Comparison of the observed oligomers with the crystal structure of TaTT (PDB ID 6GKR) shows that dodecamers may act as building blocks in the growth of transaminase single crystals. Correlating of these results to the similar X-ray studies of other proteins suggests that SAXS may be a valuable tool for searching optimum crystallization conditions. AbbreviationSAXSsmall-angle X-ray scatteringTatransaminaseTaTTtransaminase from Thermobaculum terrenumPLPpyridoxal-5'-phosphateR-PEAR-(þ)-1-phenylethylamineBCATbranched-chain amino acid aminotransferaseDAATD-aminoacid aminotransferaseR-TAR-amine:pyruvate transaminaseCommunicated by Ramaswamy H. Sarma.


Asunto(s)
Transaminasas , Bacterias , Cristalización , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rayos X
7.
Arch Biochem Biophys ; 671: 111-122, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31251922

RESUMEN

In this study, we identified a new gene (aph(3″)-Id) coding for a streptomycin phosphotransferase by using phylogenetic comparative analysis of the genome of the oxytetracycline-producing strain Streptomyces rimosus ATCC 10970. Cloning the aph(3″)-Id gene in E.coli and inducing its expression led to an increase in the minimum inhibitory concentration of the recombinant E.coli strain to streptomycin reaching 350 µg/ml. To evaluate the phosphotransferase activity of the recombinant protein APH(3″)-Id we carried out thin-layer chromatography of the putative 32P-labeled streptomycin phosphate. We also performed a spectrophotometric analysis to determine the production of ADP coupled to NADH oxidation. Here are the kinetic parameters of the streptomycin phosphotransferase APH(3″)-Id: Km 80.4 µM, Vmax 6.45 µmol/min/mg and kcat 1.73 s-1. We demonstrated for the first time the ability of the aminoglycoside phototransferase (APH(3″)-Id) to undergo autophosphorylation in vitro. The 3D structures of APH(3″)-Id in its unliganded state and in ternary complex with streptomycin and ADP were obtained. The structure of the ternary complex is the first example of this class of enzymes with bound streptomycin. Comparison of the obtained structures with those of other aminoglycoside phosphotransferases revealed peculiar structure of the substrate-binding pocket reflecting its specificity to a particular antibiotic.


Asunto(s)
Proteínas Bacterianas/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Streptomyces rimosus/enzimología , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Biología Computacional , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Genes Bacterianos , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Filogenia , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Estreptomicina/farmacología
8.
J Biomol Struct Dyn ; 36(16): 4392-4404, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29283021

RESUMEN

The histone-like (HU) protein is one of the major nucleoid-associated proteins of the bacterial nucleoid, which shares high sequence and structural similarity with IHF but differs from the latter in DNA-specificity. Here, we perform an analysis of structural-dynamic properties of HU protein from Spiroplasma melliferum and compare its behavior in solution to that of another mycoplasmal HU from Mycoplasma gallisepticum. The high-resolution heteronuclear NMR spectroscopy was coupled with molecular-dynamics study and comparative analysis of thermal denaturation of both mycoplasmal HU proteins. We suggest that stacking interactions in two aromatic clusters in the HUSpm dimeric interface determine not only high thermal stability of the protein, but also its structural plasticity experimentally observed as slow conformational exchange. One of these two centers of stacking interactions is highly conserved among the known HU and IHF proteins. Second aromatic core described recently in IHFs and IHF-like proteins is considered as a discriminating feature of IHFs. We performed an electromobility shift assay to confirm high affinities of HUSpm to both normal and distorted dsDNA, which are the characteristics of HU protein. MD simulations of HUSpm with alanine mutations of the residues forming the non-conserved aromatic cluster demonstrate its role in dimer stabilization, as both partial and complete distortion of the cluster enhances local flexibility of HUSpm.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Fenilalanina/metabolismo , Spiroplasma/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Mutagénesis Insercional , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/metabolismo , Fenilalanina/química , Fenilalanina/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Especificidad de la Especie , Spiroplasma/genética , Temperatura
9.
J Biomol Struct Dyn ; 36(1): 45-53, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27884082

RESUMEN

The histone-like (HU) protein is one of the major nucleoid-associated proteins involved in DNA supercoiling and compaction into bacterial nucleoid as well as in all DNA-dependent transactions. This small positively charged dimeric protein binds DNA in a non-sequence specific manner promoting DNA super-structures. The majority of HU proteins are highly conserved among bacteria; however, HU protein from Mycoplasma gallisepticum (HUMgal) has multiple amino acid substitutions in the most conserved regions, which are believed to contribute to its specificity to DNA targets unusual for canonical HU proteins. In this work, we studied the structural dynamic properties of the HUMgal dimer by NMR spectroscopy and MD simulations. The obtained all-atom model displays compliance with the NMR data and confirms the heterogeneous backbone flexibility of HUMgal. We found that HUMgal, being folded into a dimeric conformation typical for HU proteins, has a labile α-helical body with protruded ß-stranded arms forming DNA-binding domain that are highly flexible in the absence of DNA. The amino acid substitutions in conserved regions of the protein are likely to affect the conformational lability of the HUMgal dimer that can be responsible for complex functional behavior of HUMgal in vivo, e.g. facilitating its spatial adaptation to non-canonical DNA-targets.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Mycoplasma gallisepticum/metabolismo , Conformación Proteica , Multimerización de Proteína , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Mycoplasma gallisepticum/genética , Unión Proteica , Homología de Secuencia de Aminoácido
10.
PLoS One ; 12(11): e0188037, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131864

RESUMEN

BACKGROUND: The structure and function of bacterial nucleoid are controlled by histone-like proteins of HU/IHF family, omnipresent in bacteria and also founding archaea and some eukaryotes.HU protein binds dsDNA without sequence specificity and avidly binds DNA structures with propensity to be inclined such as forks, three/four-way junctions, nicks, overhangs and DNA bulges. Sequence comparison of thousands of known histone-like proteins from diverse bacteria phyla reveals relation between HU/IHF sequence, DNA-binding properties and other protein features. METHODOLOGY AND PRINCIPAL FINDINGS: Performed alignment and clusterization of the protein sequences show that HU/IHF family proteins can be unambiguously divided into three groups, HU proteins, IHF_A and IHF_B proteins. HU proteins, IHF_A and IHF_B proteins are further partitioned into several clades for IHF and HU; such a subdivision is in good agreement with bacterial taxonomy. We also analyzed a hundred of 3D fold comparative models built for HU sequences from all revealed HU clades. It appears that HU fold remains similar in spite of the HU sequence variations. We studied DNA-binding properties of HU from N. gonorrhoeae, which sequence is similar to one of E.coli HU, and HU from M. gallisepticum and S. melliferum which sequences are distant from E.coli protein. We found that in respect to dsDNA binding, only S. melliferum HU essentially differs from E.coli HU. In respect to binding of distorted DNA structures, S. melliferum HU and E.coli HU have similar properties but essentially different from M. gallisepticum HU and N. gonorrhea HU. We found that in respect to dsDNA binding, only S. melliferum HU binds DNA in non-cooperative manner and both mycoplasma HU bend dsDNA stronger than E.coli and N. gonorrhoeae. In respect to binding to distorted DNA structures, each HU protein has its individual profile of affinities to various DNA-structures with the increased specificity to DNA junction. CONCLUSIONS AND SIGNIFICANCE: HU/IHF family proteins sequence alignment and classification are updated. Comparative modeling demonstrates that HU protein 3D folding's even more conservative than HU sequence. For the first time, DNA binding characteristics of HU from N. gonorrhoeae, M. gallisepticum and S. melliferum are studied. Here we provide detailed analysis of the similarity and variability of DNA-recognizing and bending of four HU proteins from closely and distantly related HU clades.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Sitios de Unión , ADN Bacteriano/química , Modelos Moleculares , Conformación de Ácido Nucleico
11.
Biochimie ; 139: 125-136, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28554571

RESUMEN

Oligopeptidase B (OpdB; EC 3.4.21.83) is a trypsin-like peptidase belonging to the family of serine prolyl oligopeptidases; two-domain structure of the enzyme includes C-terminal peptidase catalytic domain and N-terminal seven-bladed ß-propeller domain. Importance of the interface between these domains and particularly of the 5 salt bridges for enzyme activity was established for protozoan OpdBs. However, these salt bridges are not conserved in γ -proteobacterial OpdBs including the peptidase from Serratia proteamaculans (PSP). In this work, using comparative modelling and protozoan OpdBs' crystal structures we created 3D models of PSP in open and closed forms to elucidate the mechanism underlying inactivation of the truncated form of PSP1-655 obtained earlier. Analysis of the models shows that in the closed form of PSP charged amino acid residues of histidine loop, surrounding the catalytic triad His652, participate in formation of the inter-domain contact interface between catalytic and ß-propeller domains, while in the open form of PSP disconnection of the catalytic triad and distortion of these contacts can be observed. Complete destruction of this interface by site-directed mutagenesis causes inactivation of PSP while elimination of the individual contacts leads to differential effects on the enzyme activity and substrate specificity. Thus, we identified structural factors regulating activity of PSP and supposedly of other γ-proteobacterial OpdBs and discovered the possibility of directed modulation of their enzymatic features.


Asunto(s)
Histidina/química , Mutación/genética , Serina Endopeptidasas/metabolismo , Serratia/enzimología , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Histidina/genética , Hidrólisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Especificidad por Sustrato
12.
Sci Rep ; 6: 36366, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808161

RESUMEN

The three-dimensional structure of the histone-like HU protein from the mycoplasma Spiroplasma melliferum KC3 (HUSpm) was determined at 1.4 Å resolution, and the thermal stability of the protein was evaluated by differential scanning calorimetry. A detailed analysis revealed that the three-dimensional structure of the HUSpm dimer is similar to that of its bacterial homologues but is characterized by stronger hydrophobic interactions at the dimer interface. This HUSpm dimer interface lacks salt bridges but is stabilized by a larger number of hydrogen bonds. According to the DSC data, HUSpm has a high denaturation temperature, comparable to that of HU proteins from thermophilic bacteria. To elucidate the structural basis of HUSpm thermal stability, we identified amino acid residues potentially responsible for this property and modified them by site-directed mutagenesis. A comparative analysis of the melting curves of mutant and wild-type HUSpm revealed the motifs that play a key role in protein thermal stability: non-conserved phenylalanine residues in the hydrophobic core, an additional hydrophobic loop at the N-terminal region of the protein, the absence of the internal cavity present at the dimer interface of some HU proteins, and the presence of additional hydrogen bonds between the monomers that are missing in homologous proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Spiroplasma/metabolismo , Secuencias de Aminoácidos , Rastreo Diferencial de Calorimetría , Enlace de Hidrógeno , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estabilidad Proteica , Spiroplasma/química , Spiroplasma/genética , Termodinámica
13.
Biochem Biophys Res Commun ; 477(4): 595-601, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27338640

RESUMEN

Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3'-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop with unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding.


Asunto(s)
Kanamicina Quinasa/química , Streptomyces rimosus/enzimología , Sitios de Unión , Cristalografía por Rayos X , Activación Enzimática , Kanamicina Quinasa/metabolismo , Modelos Moleculares , Nucleótidos/metabolismo , Fosforilación , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...