Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(9): e70156, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267689

RESUMEN

Successful management requires information on pressures that threaten a species and areas where conservation actions are needed. The Baltic Proper harbour porpoise population was first listed as Critically Endangered by the International Union for the Conservation of Nature in 2008. Now, 16 years later, there is no change in conservation status despite ample conservation policy calling for its protection and an urgent need for management action to protect this population. Here, we provide an overview of the current status of the population, highlight knowledge gaps on the impact of pressures, and make recommendations for management of anthropogenic activities. Based on an exceeded limit for anthropogenic mortality, the high concentrations of contaminants in the Baltic Sea, combined with reductions in prey availability and increases in underwater noise, it is inferred that this population is likely still decreasing in size and conservation action becomes more urgent. As bycatch and unprotected underwater explosions result in direct mortality, they must be reduced to zero. Inputs of contaminants, waste, and existing and emerging noise sources should be minimised and regulated. Additionally, ecosystem-based sustainable management of fisheries is paramount in order to ensure prey availability, and maintain a healthy Baltic Sea. Stranding networks to routinely assess individuals for genetic population assignment and health need to be expanded, to identify rare samples from this population. Knowledge is still scarce on the population-level impact of each threat, along with the cumulative impact of multiple pressures on the population. However, the current knowledge and management instruments are sufficient to apply effective protection for the population now. While bycatch is the main pressure impacting this population, urgent conservation action is needed across all anthropogenic activities. Extinction of the Baltic Proper harbour porpoise population is a choice: decision-makers have the fate of this genetically and biologically distinct marine mammal population in their hands.

3.
Sci Rep ; 13(1): 19923, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964081

RESUMEN

Armed conflicts have, in addition to severe impacts on human lives and infrastructure, also impacts on the environment, which needs to be assessed and documented. On September the 26th 2022, unknown perpetrators deliberately ruptured the two gas pipelines Nord Stream 1 and 2 with four coordinated explosions near a major chemical munition dump site near the Danish island of Bornholm in the Baltic Sea. While the massive release of natural gas into atmosphere raised serious concerns concerning the contribution to climate change-this paper assesses the overlooked direct impact of the explosions on the marine ecosystem. Seals and porpoises within a radius of four km would be at high risk of being killed by the shockwave, while temporary impact on hearing would be expected up to 50 km away. As the Baltic Proper population of harbour porpoises (Phocoena phocoena) is critically endangered, the loss or serious injury of even a single individual is considered a significant impact on the population. The rupture moreover resulted in the resuspension of 250000 metric tons of heavily contaminated sediment from deep-sea sedimentary basin for over a week, resulting in unacceptable toxicological risks towards fish and other biota in 11 km3 water in the area for more than a month.


Asunto(s)
Phocoena , Phocidae , Animales , Atmósfera , Ecosistema , Ríos
4.
Sci Rep ; 10(1): 20286, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219300

RESUMEN

Analysis of coordinated Greater Scaup (Aythya marila) count data from the last 30 years showed a 38.1% decrease in wintering numbers in North-West Europe, from 309,000 during 1988-1991 to c.192,300 individuals during 2015-2018. Annual trends in wintering numbers differed throughout the range. Numbers decreased in the UK, Ireland, and in the Netherlands, while numbers were stable in Denmark. Germany, Poland, Sweden, and Estonia showed increasing numbers, suggesting a shift in the distribution of the species within its wintering grounds towards the east and north. Higher temperatures in northern and eastern areas were correlated with the range shift of the wintering distribution. Deaths from bycatch drowning of Scaup in fishing gear have significantly decreased in recent decades in the Netherlands, where currently the greatest threat is considered the deterioration of food resources. The increasing concentration of wintering Scaup in coastal Poland and Germany (where lack of effective implementation of conservation measures fail to protect the species from the impacts of bycatch and declining food quality) pose major threats to the entire population.


Asunto(s)
Migración Animal/fisiología , Anseriformes/fisiología , Cambio Climático , Conservación de los Recursos Naturales , Animales , Seguimiento de Parámetros Ecológicos/estadística & datos numéricos , Europa (Continente) , Geografía , Dinámica Poblacional/estadística & datos numéricos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...