Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
3.
Cancer Res ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885318

RESUMEN

Increasing evidence supports the interplay between oncogenic mutations and immune escape mechanisms. Strategies to counteract the immune escape mediated by oncogenic signaling could provide improved therapeutic options for patients with various malignancies. As mutant calreticulin (CALR) is a common driver of myeloproliferative neoplasms (MPN), we analyzed the impact of oncogenic CALRdel52 on the bone marrow (BM) microenvironment in MPN. Single-cell RNA-sequencing revealed that CALRdel52 led to the expansion of TGF-ß1-producing erythroid progenitor cells and promoted the expansion of FoxP3+ regulatory T cells (Treg) in a murine MPN model. Treatment with an anti-TGF-ß antibody improved mouse survival and increased the glycolytic activity in CD4+ and CD8+ T cells in vivo, while T cell depletion abrogated the protective effects conferred by neutralizing TGF-ß. TGF-ß1 reduced perforin and TNF-α production by T cells in vitro. TGF-ß1 production by CALRdel52 cells was dependent on JAK1/2, PI3K, and ERK activity, which activated the transcription factor Sp1 to induce TGF-ß1 expression. In four independent patient cohorts, TGF-ß1 expression was increased in the BM of MPN patients compared to healthy individuals, and the BM of MPN patients contained a higher frequency of Treg compared to healthy individuals. Together, this study identified an ERK/Sp1/TGF-ß1 axis in CALRdel52 MPNs as a mechanism of immunosuppression that can be targeted to elicit T-cell-mediated cytotoxicity.

4.
Ann Hematol ; 103(7): 2299-2310, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38438627

RESUMEN

Interferon-based therapies, such as ropeginterferon alfa-2b have emerged as promising disease-modifying agents for myeloproliferative neoplasms (MPNs), including essential thrombocythemia (ET). Current ET treatments aim to normalize hematological parameters and reduce the thrombotic risk, but they do not modify the natural history of the disease and hence, have no impact on disease progression. Ropeginterferon alfa-2b (trade name BESREMi®), a novel, monopegylated interferon alfa-2b with an extended administration interval, has demonstrated a robust and sustained efficacy in polycythemia vera (PV) patients. Given the similarities in disease pathophysiology and treatment goals, ropeginterferon alfa-2b holds promise as a treatment option for ET. The ROP-ET trial is a prospective, multicenter, single-arm phase III study that includes patients with ET who are intolerant or resistant to, and/or are ineligible for current therapies, such as hydroxyurea (HU), anagrelide (ANA), busulfan (BUS) and pipobroman, leaving these patients with limited treatment options. The primary endpoint is a composite response of hematologic parameters and disease-related symptoms, according to modified European LeukemiaNet (ELN) criteria. Secondary endpoints include improvements in symptoms and quality of life, molecular response and the safety profile of ropeginterferon alfa-2b. Over a 3-year period the trial assesses longer term outcomes, particularly the effects on allele burden and clinical outcomes, such as disease-related symptoms, vascular events and disease progression. No prospective clinical trial data exist for ropeginterferon alfa-2b in the planned ET study population and this study will provide new findings that may contribute to advancing the treatment landscape for ET patients with limited alternatives. TRIAL REGISTRATION: EU Clinical Trials Register; EudraCT, 2023-505160-12-00; Registered on October 30, 2023.


Asunto(s)
Interferón alfa-2 , Interferón-alfa , Polietilenglicoles , Proteínas Recombinantes , Trombocitemia Esencial , Humanos , Trombocitemia Esencial/tratamiento farmacológico , Polietilenglicoles/uso terapéutico , Polietilenglicoles/efectos adversos , Polietilenglicoles/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/administración & dosificación , Interferón alfa-2/uso terapéutico , Interferón alfa-2/efectos adversos , Interferón-alfa/uso terapéutico , Interferón-alfa/efectos adversos , Estudios Prospectivos , Masculino , Femenino , Resultado del Tratamiento , Adulto , Persona de Mediana Edad , Anciano
5.
Cell Commun Signal ; 22(1): 186, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509561

RESUMEN

BACKGROUND: Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS: Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS: Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS: This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.


Asunto(s)
Calcio , Trastornos Mieloproliferativos , Humanos , Fura-2 , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Transducción de Señal , Mutación , Receptores de Eritropoyetina/genética , Janus Quinasa 2/genética
6.
Cancer ; 130(12): 2091-2097, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38373144

RESUMEN

The current standard-of-care for treatment of myelofibrosis (MF) comprises inhibitors of the Janus kinase (JAK)/signal transducers and activators (STAT) pathway; however, despite their ability to alleviate symptoms, they do not appear to modify underlying disease and have not demonstrated substantial survival benefit. Allogeneic-hematopoietic stem cell transplantation remains the only curative option for patients with MF but is limited to a subset of high-risk and fit patients. Early disease modification could positively affect disease trajectory for lower risk patients with MF as well as those with conditions that can precede MF, such as polycythemia vera and essential thrombocythemia. Here, the authors discuss critical unmet needs in the MF treatment paradigm, including: the need for safe, impactful therapies for lower risk patients, thus allowing intervention when success is most likely; better development of first-line therapies (likely highly novel or combination strategies) for intermediate-risk/higher risk patients; and approved drugs to manage cytopenia. Finally, a consensus definition of disease modification is needed that informs trial design, allowing the development of clinical end points that enable understanding of therapies and responses and that facilitate the development of therapies that work according to this definition. Through close collaboration between clinicians, patients, and the pharmaceutical industry, better efforts to define benefit and identify patients most likely to benefit from a particular combination or treatment strategy should enable the development of more effective and safe treatments to extend and improve quality of life for patients with MF.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mielofibrosis Primaria , Humanos , Inhibidores de las Cinasas Janus/uso terapéutico , Mielofibrosis Primaria/terapia
7.
Sci Rep ; 14(1): 2810, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308077

RESUMEN

Myeloproliferative neoplasms (MPNs) encompass a diverse group of hematologic disorders driven by mutations in JAK2, CALR, or MPL. The prevailing working model explaining how these driver mutations induce different disease phenotypes is based on the decisive influence of the cellular microenvironment and the acquisition of additional mutations. Here, we report increased levels of chromatin segregation errors in hematopoietic cells stably expressing CALRdel52 or JAK2V617F mutations. Our investigations employing murine 32DMPL and human erythroleukemic TF-1MPL cells demonstrate a link between CALRdel52 or JAK2V617F expression and a compromised spindle assembly checkpoint (SAC), a phenomenon contributing to error-prone mitosis. This defective SAC is associated with imbalances in the recruitment of SAC factors to mitotic kinetochores upon CALRdel52 or JAK2V617F expression. We show that JAK2 mutant CD34 + MPN patient-derived cells exhibit reduced expression of the master mitotic regulators PLK1, aurora kinase B, and PP2A catalytic subunit. Furthermore, the expression profile of mitotic regulators in CD34 + patient-derived cells allows to faithfully distinguish patients from healthy controls, as well as to differentiate primary and secondary myelofibrosis from essential thrombocythemia and polycythemia vera. Altogether, our data suggest alterations in mitotic regulation as a potential driver in the pathogenesis in MPN.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Animales , Humanos , Ratones , Calreticulina/genética , Calreticulina/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/genética , Policitemia Vera/genética , Mielofibrosis Primaria/genética , Microambiente Tumoral
8.
Ann Hematol ; 103(4): 1149-1158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336973

RESUMEN

Bone marrow biopsy (BMB) is a well-established diagnostic tool for various hematological, oncological, and other medical conditions. However, treatment options for geriatric patients (pts) facing these diseases are often constrained. In this single-center, retrospective analysis we assessed the diagnostic value of BMB in geriatric pts aged ≥ 85 years and examined its impact on therapeutic decisions. We examined 156 BMB procedures in 129 pts, extracting data from the electronic patient records and applying descriptive statistical methods. Nearly half of the primary diagnostic procedures (26; 44.1%) resulted in a modification of the initially suspected diagnosis. Notably, 15 (25.4%) of these procedures, led to changes in both the diagnosis and planned interventional treatment. Among the 15 follow-up procedures (36.6%), disease progression was initially suspected based on symptoms, but BMB results excluded such progression. In lymphoma staging biopsies, only 2 (3.6%) prompted a change in therapeutic intervention. Importantly, no BMB-related complications, such as bleeding, infection or nerve damage, were reported. Median survival after BMB was 16.1 months across all pts, yet it varied based on the diagnosis and comorbidity score. The survival of pts with a change in therapy based on BMB results did not significantly differ from those who did not undergo a therapy change. In conclusion, BMB proved to be generally safe and beneficial in this geriatric cancer patient cohort beyond the age of 85 years. However, the advantages of lymphoma staging in this patient population warrant further consideration.


Asunto(s)
Médula Ósea , Enfermedad de Hodgkin , Humanos , Anciano , Médula Ósea/patología , Estudios Retrospectivos , Biopsia , Enfermedad de Hodgkin/patología , Fluorodesoxiglucosa F18 , Estadificación de Neoplasias
9.
Stem Cell Reports ; 19(2): 224-238, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38278152

RESUMEN

The myeloproliferative disease polycythemia vera (PV) driven by the JAK2 V617F mutation can transform into myelofibrosis (post-PV-MF). It remains an open question how JAK2 V617F in hematopoietic stem cells induces MF. Megakaryocytes are major players in murine PV models but are difficult to study in the human setting. We generated induced pluripotent stem cells (iPSCs) from JAK2 V617F PV patients and differentiated them into megakaryocytes. In differentiation assays, JAK2 V617F iPSCs recapitulated the pathognomonic skewed megakaryocytic and erythroid differentiation. JAK2 V617F iPSCs had a TPO-independent and increased propensity to differentiate into megakaryocytes. RNA sequencing of JAK2 V617F iPSC-derived megakaryocytes reflected a proinflammatory, profibrotic phenotype and decreased ribosome biogenesis. In three-dimensional (3D) coculture, JAK2 V617F megakaryocytes induced a profibrotic phenotype through direct cell contact, which was reversed by the JAK2 inhibitor ruxolitinib. The 3D coculture system opens the perspective for further disease modeling and drug discovery.


Asunto(s)
Células Madre Pluripotentes Inducidas , Policitemia Vera , Humanos , Ratones , Animales , Médula Ósea/patología , Megacariocitos , Janus Quinasa 2/genética , Policitemia Vera/genética , Policitemia Vera/patología , Fenotipo , Fibrosis , Mutación
10.
Lancet Haematol ; 11(1): e62-e74, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061384

RESUMEN

New options for medical therapy and risk scoring systems containing molecular data are leading to increased complexity in the management of patients with myelofibrosis. To inform patients' optimal care, we updated the 2015 guidelines on indications for and management of allogeneic haematopoietic stem-cell transplantation (HSCT) with the support of the European Society for Blood and Marrow Transplantation (EBMT) and European LeukemiaNet (ELN). New recommendations were produced using a consensus-building methodology after a comprehensive review of articles released from January, 2015 to December, 2022. Seven domains and 18 key questions were selected through a series of questionnaires using a Delphi process. Key recommendations in this update include: patients with primary myelofibrosis and an intermediate-2 or high-risk Dynamic International Prognostic Scoring System score, or a high-risk Mutation-Enhanced International Prognostic Score Systems (MIPSS70 or MIPSS70-plus) score, or a low-risk or intermediate-risk Myelofibrosis Transplant Scoring System score should be considered candidates for allogeneic HSCT. All patients who are candidates for allogeneic HSCT with splenomegaly greater than 5 cm below the left costal margin or splenomegaly-related symptoms should receive a spleen-directed treatment, ideally with a JAK-inhibitor; HLA-matched sibling donors remain the preferred donor source to date. Reduced intensity conditioning and myeloablative conditioning are both valid options for patients with myelofibrosis. Regular post-transplantation driver mutation monitoring is recommended to detect and treat early relapse with donor lymphocyte infusion. In a disease where evidence-based guidance is scarce, these recommendations might help clinicians and patients in shared decision making.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mielofibrosis Primaria , Humanos , Mielofibrosis Primaria/terapia , Esplenomegalia , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/métodos , Bazo , Acondicionamiento Pretrasplante
11.
Cell Rep ; 43(1): 113608, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38117649

RESUMEN

The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis.


Asunto(s)
Antineoplásicos , Trastornos Mieloproliferativos , Neoplasias , Humanos , Ratones , Animales , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Leucocitos Mononucleares/metabolismo , Hematopoyesis
12.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38139386

RESUMEN

Myeloproliferative neoplasms (MPN) are rare hematologic disorders characterized by clonal hematopoiesis. Familial clustering is observed in a subset of cases, with a notable proportion exhibiting heterozygous germline mutations in DNA double-strand break repair genes (e.g., BRCA1). We investigated the therapeutic potential of targeting BRCA1 haploinsufficiency alongside the JAK2V617F driver mutation. We assessed the efficacy of combining the PARP inhibitor olaparib with interferon-alpha (IFNα) in CRISPR/Cas9-engineered Brca1+/- Jak2V617F-positive 32D cells. Olaparib treatment induced a higher number of DNA double-strand breaks, as demonstrated by γH2AX analysis through Western blot (p = 0.024), flow cytometry (p = 0.013), and confocal microscopy (p = 0.071). RAD51 foci formation was impaired in Brca1+/- cells compared to Brca1+/+ cells, indicating impaired homologous recombination repair due to Brca1 haploinsufficiency. Importantly, olaparib enhanced apoptosis while diminishing cell proliferation and viability in Brca1+/- cells compared to Brca1+/+ cells. These effects were further potentiated by IFNα. Olaparib induced interferon-stimulated genes and increased endogenous production of IFNα in Brca1+/- cells. These responses were abrogated by STING inhibition. In conclusion, our findings suggest that the combination of olaparib and IFNα presents a promising therapeutic strategy for MPN patients by exploiting the synthetic lethality between germline BRCA1 mutations and the JAK2V617F MPN driver mutation.


Asunto(s)
Proteína BRCA1 , Trastornos Mieloproliferativos , Neoplasias , Humanos , Proteína BRCA1/genética , ADN , Células Germinativas , Haploinsuficiencia , Interferón-alfa/farmacología , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Neoplasias/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN por Recombinación , Mutaciones Letales Sintéticas
13.
14.
Front Oncol ; 13: 1277453, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941547

RESUMEN

Imetelstat shows activity in patients with myeloproliferative neoplasms, including primary myelofibrosis (PMF) and essential thrombocythemia. Here, we describe a case of prolonged disease stabilization by imetelstat treatment of a high-risk PMF patient enrolled into the clinical study MYF2001. We confirmed continuous shortening of telomere length (TL) by imetelstat treatment but observed emergence and expansion of a KRAST58I mutated clone during the patient's clinical course. In order to investigate the molecular mechanisms involved in the imetelstat treatment response, we generated induced pluripotent stem cells (iPSC) from this patient. TL of iPSC-derived hematopoietic stem and progenitor cells, which was increased after reprogramming, was reduced upon imetelstat treatment for 14 days. However, while imetelstat reduced clonogenic growth of the patient's primary CD34+ cells, clonogenic growth of iPSC-derived CD34+ cells was not affected, suggesting that TL was not critically short in these cells. Also, the propensity of iPSC differentiation toward megakaryocytes and granulocytes was not altered. Using human TF-1MPL and murine 32DMPL cell lines stably expressing JAK2V617F or CALRdel52, imetelstat-induced reduction of viability was significantly more pronounced in CALRdel52 than in JAK2V617F cells. This was associated with an immediate downregulation of JAK2 phosphorylation and downstream signaling as well as a reduction of hTERT and STAT3 mRNA expression. Hence, our data demonstrate that imetelstat reduces TL and targets JAK/STAT signaling, particularly in CALR-mutated cells. Although the exact patient subpopulation who will benefit most from imetelstat needs to be defined, our data propose that CALR-mutated clones are highly vulnerable.

16.
Ann Hematol ; 102(12): 3383-3399, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792065

RESUMEN

Ruxolitinib (RUX) is a Janus kinase 1/2 inhibitor (JAKi) approved in the EU for treating disease­related splenomegaly or symptoms in adults patients with myelofibrosis (MF). This is an interim analysis of JAKoMo, a prospective, non­interventional, phase IV study in MF. Between 2012-2019 (cutoff March 2021), 928 patients (JAKi-naïve and -pretreated) enrolled from 122 German centers. This analysis focuses on JAKi-naïve patients. RUX was administered according to the Summary of Product Characteristics. Compared to the COMFORT-I, -II, and JUMP trials, patients in JAKoMo were older (median 73 years), had poorer Eastern Cooperative Oncology Group (ECOG) performance statuses (16.5% had ECOG ≥ 2), and were more transfusion dependent (48.5%). JAKoMo represents the more challenging patients with MF encountered outside of interventional studies. However, patients with low-risk International Prognostic Scoring System (IPSS) scores or without palpable splenomegaly were also included. Following RUX treatment, 82.5% of patients experienced rapid (≤ 1 month), significant decreases in palpable spleen size, which remained durable for 24 months (60% patients). Symptom assessment scores improved significantly in Month 1 (median -5.2) up to Month 12 (-6.2). Common adverse events (AEs) were anemia (31.2%) and thrombocytopenia (28.6%). At cutoff, 54.3% of patients had terminated the study due to, death, AEs, or deterioration of health. No new safety signals were observed. Interim analysis of the JAKoMo study confirms RUX safety and efficacy in a representative cohort of real-world, elderly, JAKi-naïve patients with MF. Risk scores were used in less than half of the patients to initiate RUX treatment.Trial registration: NCT05044026; September 14, 2021.


Asunto(s)
Inhibidores de las Cinasas Janus , Mielofibrosis Primaria , Adulto , Humanos , Anciano , Esplenomegalia/tratamiento farmacológico , Mielofibrosis Primaria/diagnóstico , Mielofibrosis Primaria/tratamiento farmacológico , Estudios Prospectivos , Nitrilos , Resultado del Tratamiento
17.
Clin Chem ; 69(11): 1283-1294, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37708296

RESUMEN

BACKGROUND: Cell-type specific DNA methylation (DNAm) can be employed to determine the numbers of leukocyte subsets in blood. In contrast to conventional methods for leukocyte counts, which are based on cellular morphology or surface marker protein expression, the cellular deconvolution based on DNAm levels is applicable for frozen or dried blood. Here, we further enhanced targeted DNAm assays for leukocyte counts in clinical application. METHODS: DNAm profiles of 40 different studies were compiled to identify CG dinucleotides (CpGs) with cell-type specific DNAm using a computational framework, CimpleG. DNAm levels at these CpGs were then measured with digital droplet PCR in venous blood from 160 healthy donors and 150 patients with various hematological disorders. Deconvolution was further validated with venous blood (n = 75) and capillary blood (n = 31) that was dried on Whatman paper or on Mitra microsampling devices. RESULTS: In venous blood, automated cell counting or flow cytometry correlated well with epigenetic estimates of relative leukocyte counts for granulocytes (r = 0.95), lymphocytes (r = 0.97), monocytes (r = 0.82), CD4 T cells (r = 0.84), CD8 T cells (r = 0.94), B cells (r = 0.96), and NK cells (r = 0.72). Similar correlations and precisions were achieved for dried blood samples. Spike-in with a reference plasmid enabled accurate epigenetic estimation of absolute leukocyte counts from dried blood samples, correlating with conventional venous (r = 0.86) and capillary (r = 0.80) blood measurements. CONCLUSIONS: The advanced selection of cell-type specific CpGs and utilization of digital droplet PCR analysis provided accurate epigenetic blood counts. Analysis of dried blood facilitates self-sampling with a finger prick, thereby enabling easier accessibility to testing.


Asunto(s)
Metilación de ADN , Leucocitos , Humanos , Recuento de Leucocitos , Monocitos/metabolismo , Linfocitos B/metabolismo , Proteínas de la Membrana/metabolismo
18.
Ann Hematol ; 102(10): 2741-2752, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37592092

RESUMEN

The approved dose of bosutinib in chronic phase CML is 400 mg QD in first-line and 500 mg QD in later-line treatment. However, given that gastrointestinal (GI) toxicity typically occurs early after treatment initiation, physicians often tend to start therapy with lower doses although this has never been tested systematically in prospective trials in the Western world. The Bosutinib Dose Optimization (BODO) Study, a multicenter phase II study, investigated the tolerability and efficacy of a step-in dosing concept of bosutinib (starting at 300 mg QD) in chronic phase CML patients in 2nd or 3rd line who were intolerant and/or refractory to previous TKI treatment. Of 57 patients included until premature closure of the study due to slow recruitment, 34 (60%) reached the targeted dose level of 500 mg QD following the 2-weekly step-in dosing regimen. While the dosing-in concept failed to reduce GI toxicity (grade II-IV, primary study endpoint) to < 40% (overall rate of 60%; 95% CI: 45-74%), bosutinib treatment (mean dosage: 403 mg/day) showed remarkable efficacy with a cumulative major molecular remission (MMR) rate of 79% (95% CI: 66 to 88%) at month 24. Of thirty patients refractory to previous therapy and not in MMR at baseline, 19 (64%) achieved an MMR during treatment. GI toxicity did not significantly impact on patient-reported outcomes (PRO) and led to treatment discontinuation in only one patient. Overall, the results of our trial support the efficacy and safety of bosutinib after failure of second-generation TKI pre-treatment. Trial registration: NCT02577926.


Asunto(s)
Leucemia Mieloide de Fase Crónica , Humanos , Estudios Prospectivos , Compuestos de Anilina/efectos adversos , Leucemia Mieloide de Fase Crónica/tratamiento farmacológico
20.
Clin Epigenetics ; 15(1): 105, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370186

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are quantified in daily clinical practice by flow cytometry. In this study, we provide proof of concept that HSPCs can also be estimated by targeted DNA methylation (DNAm) analysis. The DNAm levels at three individual CG dinucleotides (CpG sites) in the genes MYO1D, STK17A, and SP140 correlated with CD34+ cell numbers in mobilized peripheral blood and with blast counts in leukemia. In the future, such epigenetic biomarkers can support the evaluation of stem cell mobilization, HSPC harvesting, or blast count in leukemia.


Asunto(s)
Metilación de ADN , Leucemia , Humanos , Factor Estimulante de Colonias de Granulocitos , Células Madre Hematopoyéticas/metabolismo , Antígenos CD34/metabolismo , Leucemia/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Reguladoras de la Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...