Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 107(5): 1296-1303, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29339134

RESUMEN

Achieving the desired final protein formulation using ultrafiltration/diafiltration (UF/DF) operations is an essential component of many protein purification processes. It is well documented that differences in the excipient and buffer concentrations exist between the DF and retentate solutions when they have achieved equilibrium. Several publications have proposed ways to calculate these differences. However, the accuracy of these methods has been limited by the use of an estimated protein charge value. In this article, a small-scale system is described, which can accurately determine the protein charge by making buffer and excipient concentration measurements and applying the determined values to the Donnan and volume exclusion equations. This information can be utilized to generate a standard curve, which in turn can be applied to at-scale UF/DF operations. For 2 different antibodies, the standard curve generated by the small-scale system yielded buffer concentrations and pH values that agreed well with those generated after UF/DF operations, whereas using the theoretical protein charge caused a departure from the measured results. This model also provides good estimates as to how the final formulation pH and buffer concentration vary as a function of the pH and buffer concentration in the DF buffer. This information is of important utility for the accurate formulation of high-concentration protein solutions (>100 mg/mL) where the coconcentration of buffers and the volume exclusion of certain excipients are amplified. The low material requirements of the small-scale system are a major benefit for early phase formulation and process development when sufficient time and material may not be available, in particular to ensure successful UF/DF operations for the development of high protein concentration formulations.


Asunto(s)
Anticuerpos Monoclonales/química , Excipientes/química , Ultrafiltración/métodos , Acetatos/análisis , Tampones (Química) , Cromatografía Líquida de Alta Presión/métodos , Difusión , Composición de Medicamentos/métodos , Concentración de Iones de Hidrógeno , Modelos Químicos , Electricidad Estática
2.
Br J Pharmacol ; 174(22): 4173-4185, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28859225

RESUMEN

BACKGROUND AND PURPOSE: The potential for therapeutic antibody treatment of neurological diseases is limited by poor penetration across the blood-brain barrier. I.c.v. delivery is a promising route to the brain; however, it is unclear how efficiently antibodies delivered i.c.v. penetrate the cerebrospinal spinal fluid (CSF)-brain barrier and distribute throughout the brain parenchyma. EXPERIMENTAL APPROACH: We evaluated the pharmacokinetics and pharmacodynamics of an inhibitory monoclonal antibody against ß-secretase 1 (anti-BACE1) following continuous infusion into the left lateral ventricle of healthy adult cynomolgus monkeys. KEY RESULTS: Animals infused with anti-BACE1 i.c.v. showed a robust and sustained reduction (~70%) of CSF amyloid-ß (Aß) peptides. Antibody distribution was near uniform across the brain parenchyma, ranging from 20 to 40 nM, resulting in a ~50% reduction of Aß in the cortical parenchyma. In contrast, animals administered anti-BACE1 i.v. showed no significant change in CSF or cortical Aß levels and had a low (~0.6 nM) antibody concentration in the brain. CONCLUSION AND IMPLICATIONS: I.c.v. administration of anti-BACE1 resulted in enhanced BACE1 target engagement and inhibition, with a corresponding dramatic reduction in CNS Aß concentrations, due to enhanced brain exposure to antibody.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/farmacocinética , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/inmunología , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/líquido cefalorraquídeo , Ácido Aspártico Endopeptidasas/inmunología , Encéfalo/metabolismo , Femenino , Infusiones Intraventriculares , Macaca fascicularis
3.
Mol Pharm ; 11(4): 1345-58, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24620787

RESUMEN

Asparaginyl (Asn) deamidation could lead to altered potency, safety, and/or pharmacokinetics of therapeutic protein drugs. In this study, we investigated the effects of several different carboxylic acids on Asn deamidation rates using an IgG1 monoclonal antibody (mAb1*) and a model hexapeptide (peptide1) with the sequence YGKNGG. Thermodynamic analyses of the kinetics data revealed that higher deamidation rates are associated with predominantly more negative ΔS and, to a lesser extent, more positive ΔH. The observed differences in deamidation rates were attributed to the unique ability of each type of carboxylic acid to stabilize the energetically unfavorable transition-state conformations required for imide formation. Quantitative structure property relationship (QSPR) analysis using kinetic data demonstrated that molecular descriptors encoding for the geometric spatial distribution of atomic properties on various carboxylic acids are effective determinants for the deamidation reaction. Specifically, the number of O-O and O-H atom pairs on carboxyl and hydroxyl groups with interatomic distances of 4-5 Å on a carboxylic acid buffer appears to determine the rate of deamidation. Collectively, the results from structural and thermodynamic analyses indicate that carboxylic acids presumably form multiple hydrogen bonds and charge-charge interactions with the relevant deamidation site and provide alignment between the reactive atoms on the side chain and backbone. We propose that carboxylic acids catalyze deamidation by stabilizing a specific, energetically unfavorable transition-state conformation of l-asparaginyl intermediate II that readily facilitates bond formation between the γ-carbonyl carbon and the deprotonated backbone nitrogen for cyclic imide formation.


Asunto(s)
Anticuerpos Monoclonales/química , Asparagina/química , Ácidos Carboxílicos/química , Inmunoglobulina G/química , Relación Estructura-Actividad Cuantitativa , Termodinámica , Catálisis , Cinética
4.
Pharm Res ; 26(11): 2417-28, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19756976

RESUMEN

PURPOSE: To develop a quantitative scheme to describe and predict asparagine deamidation in polypeptides using chemometric models employing reduced physicochemical property scales of amino acids. METHODS: Deamidation rates for 306 pentapeptides, Gly-(n-1)-Asn-(n+1)-Gly, with the residues n-1 and n+1 varying over the naturally occurring amino acids, were obtained from literature. A multivariate regression technique, called projection to latent structures (PLS), was used to establish mathematical relationships between the physicochemical properties and the deamidation half-lives of the amino acid sequences. Three reduced physicochemical property scales, amide hydrogen exchange rates (to describe the relative acidity of the amide protons) and flexibility parameters for the sequences were evaluated for their predictive capacity. RESULTS: The most effective descriptors of the deamidation half-lives were reduced-property parameters for amino acids called zz-scores. The PLS models with the reduced property scales, combined with the hydrogen exchange rates and/or flexibility parameters, explained more than 95% of the sequence-dependent variation in the deamidation half-lives. The amide hydrogen exchange rate (i.e., amide proton acidity), hydrophilicity, polarizability, and size of amino acids in position n+1 were found to be the principal factors governing the rate of deamidation. The effect of amino acids in position n-1 was found to be negligible. CONCLUSIONS: Chemometric analysis employing reduced physicochemical parameters can provide an accurate prediction of chemical instability in peptides and proteins. The relative importance of these various factors could also be determined.


Asunto(s)
Asparagina/química , Química Farmacéutica , Estabilidad de Medicamentos , Péptidos/química , Cinética , Modelos Biológicos , Estructura Molecular , Análisis Multivariante , Desnaturalización Proteica/efectos de los fármacos
5.
Pharm Res ; 22(7): 1059-68, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16028006

RESUMEN

PURPOSE: The aim of the study is to provide a methodology for assigning unpaired cysteine residues in proteins formulated in a variety of different conditions to identify structural heterogeneity as a potential cause for protein degradation. METHODS: 1-Cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) was employed for cyanylating free cysteines in proteins and peptides. Subsequent basic cleavage of the peptide bond at the N-terminal side of the cyanylated cysteines provided direct information about their location. RESULTS: CDAP was successfully employed to a wide variety of labeling conditions. CDAP was reactive between pH 2.0 and 8.0 with a maximum labeling efficiency at pH 5.0. Its reactivity was not affected by excipients, salt or denaturant. Storing CDAP in an organic solvent increased its intrinsic stability. It was demonstrated that CDAP can be employed as a thiol-directed probe to investigate structural heterogeneity of proteins by examining the accessibility of unpaired cysteine residues. CONCLUSION: CDAP is a unique cysteine-labeling reagent because it is reactive under acidic conditions. This provides an advantage over other sulfhydryl labeling reagents as it avoids potential thiol-disulfide exchange. Optimization of the cyanylation reaction allowed the utilization of CDAP as a thiol-directed probe to investigate accessibility of sulfhydryl groups in proteins under various formulation conditions to monitor structural heterogeneity.


Asunto(s)
Cisteína/análisis , Glicoproteínas/química , Factor Estimulante de Colonias de Granulocitos/química , Nitrilos/química , Péptidos/química , Compuestos de Piridinio/química , Receptores Citoplasmáticos y Nucleares/química , Receptores del Factor de Necrosis Tumoral/química , Marcadores de Afinidad/química , Cisteína/química , Filgrastim , Concentración de Iones de Hidrógeno , Estructura Molecular , Osteoprotegerina , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Reactivos de Sulfhidrilo/química
6.
Pharm Res ; 19(4): 511-6, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12033388

RESUMEN

PURPOSE: To determine the effect of protein concentration on aggregation induced through quiescent shelf-life incubation or shipping-related agitation. METHODS: All aggregation was measured by size-exclusion high-performance liquid chromatography. Aggregation was induced by time-dependent incubation under stationary conditions or by agitation caused by shaking, vortexing, or vibration using simulated shipping conditions. RESULTS: Protein aggregation is commonly a second- or higher-order process that is expected to increase with higher protein concentration. As expected, for three proteins (PEG-GCSF, PEG-MGDF, and OPG-Fc) that were examined, the aggregation increased with higher protein concentration if incubated in a quiescent shelf-life setting. However, aggregation decreased with higher protein concentration if induced by an air/water interface as a result of agitation. This unexpected result may be explained by the rate-limiting effect on aggregation of the air/water interface and the critical nature of the air/ water interface to protein ratio that is greatest with decreased protein concentration. The non-ionic detergent polysorbate 20 enhanced the aggregation observed in the quiescently incubated sample but abrogated the aggregation induced by the air/water interface. CONCLUSIONS: The effect of protein concentration was opposite for aggregation that resulted from quiescent shelf-life treatment compared to induction by agitation. For motionless shelf-life incubation, increased concentration of protein resulted in more aggregation. However, exposure to agitation resulted in more aggregation with decreased protein concentration. These results highlight an unexpected complexity of protein aggregation reactions.


Asunto(s)
Proteínas/química , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Glicoproteínas/química , Factor Estimulante de Colonias de Granulocitos/química , Osteoprotegerina , Polietilenglicoles/química , Polisorbatos/química , Receptores Citoplasmáticos y Nucleares/química , Receptores del Factor de Necrosis Tumoral , Proteínas Recombinantes/química , Trombopoyetina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...