Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 15(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38921515

RESUMEN

The recombinant structural protein described in this study was designed based on sequences derived from elastin and silk. Silk-elastin hybrid copolymers are characterized by high solubility while maintaining high product flexibility. The phase transition temperature from aqueous solution to hydrogel, as well as other physicochemical and mechanical properties of such particles, can differ significantly depending on the number of sequence repeats. We present a preliminary characterization of the EJ17zipR protein obtained in high yield in a prokaryotic expression system and efficiently purified via a multistep process. Its addition significantly improves biomaterial's rheological and mechanical properties, especially elasticity. As a result, EJ17zipR appears to be a promising component for bioinks designed to print spatially complex structures that positively influence both shape retention and the internal transport of body fluids. The results of biological studies indicate that the addition of the studied protein creates a favorable microenvironment for cell adhesion, growth, and migration.

2.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727343

RESUMEN

In this study we propose to use for bioprinting a bioink enriched with a recombinant RE15mR protein with a molecular weight of 26 kDa, containing functional sequences derived from resilin and elastin. The resulting protein also contains RGD sequences in its structure, as well as a metalloproteinase cleavage site, allowing positive interaction with the cells seeded on the construct and remodeling the structure of this protein in situ. The described protein is produced in a prokaryotic expression system using an E. coli bacterial strain and purified by a process using a unique combination of known methods not previously used for recombinant elastin-like proteins. The positive effect of RE15mR on the mechanical, physico-chemical, and biological properties of the print is shown in the attached results. The addition of RE15mR to the bioink resulted in improved mechanical and physicochemical properties and promoted the habitation of the prints by cells of the L-929 line.

3.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38727354

RESUMEN

Currently, a major challenge in material engineering is to develop a cell-safe biomaterial with significant utility in processing technology such as 3D bioprinting. The main goal of this work was to optimize the composition of a new graphene oxide (GO)-based bioink containing additional extracellular matrix (ECM) with unique properties that may find application in 3D bioprinting of biomimetic scaffolds. The experimental work evaluated functional properties such as viscosity and complex modulus, printability, mechanical strength, elasticity, degradation and absorbability, as well as biological properties such as cytotoxicity and cell response after exposure to a biomaterial. The findings demonstrated that the inclusion of GO had no substantial impact on the rheological properties and printability, but it did enhance the mechanical properties. This enhancement is crucial for the advancement of 3D scaffolds that are resilient to deformation and promote their utilization in tissue engineering investigations. Furthermore, GO-based hydrogels exhibited much greater swelling, absorbability and degradation compared to non-GO-based bioink. Additionally, these biomaterials showed lower cytotoxicity. Due to its properties, it is recommended to use bioink containing GO for bioprinting functional tissue models with the vascular system, e.g., for testing drugs or hard tissue models.

4.
Materials (Basel) ; 15(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35683156

RESUMEN

The process of foaming poly(caprolactone)-based composite materials using supercritical carbon dioxide was analyzed, especially in terms of the biocompatibility of the resultant materials. The influence of foaming process conditions and composite material properties on the functional properties of polymer solid foams, intended for artificial scaffolds for bone cell culture, was investigated. The relationship between wettability (contact angle) and water absorption rate as a result of the application of variable conditions for the production of porous structures was presented. For the evaluation of potential cytotoxicity, the MTT and PrestoBlue tests were carried out, and animal cells (mouse fibroblasts) were cultured on the materials for nine days. There was no toxic effect of composite materials made of poly(caprolactone) containing porogen particles: hydroxyapatite, crystalline nanocellulose, and graphene oxide on cells. The desired effect of the porogens used in the foaming process on the affinity of cells to the resultant material was demonstrated. The tested materials have been shown to be biocompatible and suitable for applications in biomedical engineering.

5.
Materials (Basel) ; 15(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35161113

RESUMEN

The process of foaming poly(caprolactone)-based composites using supercritical carbon dioxide was analyzed. The impact of the conditions of the solid-foam production process on the process efficiency and properties of porous structures was investigated. The novel application of various types of porogens-hydroxyapatite, nanocellulose, carboxymethylcellulose, and graphene oxide-was tested in order to modify the properties and improve the quality of solid foams, increasing their usefulness in specialized practical applications. The study showed a significant influence of the foaming process conditions on the properties of solid foams. The optimal process parameters were determined to be pressure 18 MPa, temperature 70 °C, and time 1 h in order to obtain structures with appropriate properties for applications in biomedical engineering, and the most promising material for their production was selected: a composite containing 5% hydroxyapatite or 0.2% graphene oxide.

6.
Micromachines (Basel) ; 12(3)2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799490

RESUMEN

BACKGROUND: 3D bioprinting is the future of constructing functional organs. Creating a bioactive scaffold with pancreatic islets presents many challenges. The aim of this paper is to assess how the 3D bioprinting process affects islet viability. METHODS: The BioX 3D printer (Cellink), 600 µm inner diameter nozzles, and 3% (w/v) alginate cell carrier solution were used with rat, porcine, and human pancreatic islets. Islets were divided into a control group (culture medium) and 6 experimental groups (each subjected to specific pressure between 15 and 100 kPa). FDA/PI staining was performed to assess the viability of islets. Analogous studies were carried out on α-cells, ß-cells, fibroblasts, and endothelial cells. RESULTS: Viability of human pancreatic islets was as follows: 92% for alginate-based control and 94%, 90%, 74%, 48%, 61%, and 59% for 15, 25, 30, 50, 75, and 100 kPa, respectively. Statistically significant differences were observed between control and 50, 75, and 100 kPa, respectively. Similar observations were made for porcine and rat islets. CONCLUSIONS: Optimal pressure during 3D bioprinting with pancreatic islets by the extrusion method should be lower than 30 kPa while using 3% (w/v) alginate as a carrier.

7.
Micromachines (Basel) ; 11(7)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629779

RESUMEN

The technology of tissue engineering is a rapidly evolving interdisciplinary field of science that elevates cell-based research from 2D cultures through organoids to whole bionic organs. 3D bioprinting and organ-on-a-chip approaches through generation of three-dimensional cultures at different scales, applied separately or combined, are widely used in basic studies, drug screening and regenerative medicine. They enable analyses of tissue-like conditions that yield much more reliable results than monolayer cell cultures. Annually, millions of animals worldwide are used for preclinical research. Therefore, the rapid assessment of drug efficacy and toxicity in the early stages of preclinical testing can significantly reduce the number of animals, bringing great ethical and financial benefits. In this review, we describe 3D bioprinting techniques and first examples of printed bionic organs. We also present the possibilities of microfluidic systems, based on the latest reports. We demonstrate the pros and cons of both technologies and indicate their use in the future of medicine.

8.
Transplant Proc ; 52(7): 2043-2049, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32527472

RESUMEN

INTRODUCTION: The extracellular matrix (ECM) consists, among others, of polysaccharides, glycosaminoglycans, and proteins. It is being increasingly used in tissue bioengineering. Obtaining ECM of the highest quality through decellularization is a big challenge because of some differences in organ structure. To deprive organs of the cellular part, chemical, enzymatic, or mechanical methods are used. After decellularization, we get a scaffold made of a variety of proteins, and it is the role of these proteins that can significantly affect the maintenance of the spatial structure and be a suitable environment for cells to rebuild a specific organ. AIM: Estimation of the detergent (Triton X-100) flow parameters and anthropometric donors' decellularization process accuracy on the final ECM composition. MATERIALS: Five human pancreata, rejected from transplantation, were used for decellularization. All organs were harvested from brain-dead donors age 13 to 60 years. METHODS: Decellularization was carried out using the flow method with Triton X-100 as an active agent. The experiment compared 5 different flow values. After decellularization, an assessment of the final DNA concentration and the protein composition was performed. Results were compared to anthropometric data of donors. In addition, a microscopic analysis was also carried out. RESULTS: The best results were obtained using a flow of 120 mL/minute. A higher detergent flow was associated with a lower concentration of residual DNA in scaffold. Analysis of the protein profile with anthropometric data has shown that LAM A2 was increasing with age and LAMA5 was decreasing. Being overweight was associated with a higher proportion of COL1 and 4 and a smaller proportion of COL6.


Asunto(s)
Detergentes , Matriz Extracelular , Octoxinol , Páncreas , Ingeniería de Tejidos/métodos , Adolescente , Adulto , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Femenino , Glicosaminoglicanos , Humanos , Masculino , Persona de Mediana Edad , Páncreas/química , Páncreas/efectos de los fármacos , Perfusión , Donantes de Tejidos , Andamios del Tejido/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...