Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 13(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37754104

RESUMEN

Arrayed imaging reflectometry (AIR), first introduced in 2004, is a thin-film interference sensor technique that optimizes optical properties (angle of incidence, polarization, substrate refractive index, and thickness) to create a condition of total destructive interference at the surface of a silicon substrate. The advantages of AIR are its sensitivity, dynamic range, multiplex capability, and high-throughput compatibility. AIR has been used for the detection of antibodies against coronaviruses, influenza viruses, Staphylococcus aureus, and human autoantigens. It has also shown utility in detection of cytokines, with sensitivity comparable to bead-based and ELISA assays. Not limited to antibodies or antigens, mixed aptamer and protein arrays as well as glycan arrays have been employed in AIR for differentiating influenza strains. Mixed arrays using direct and competitive inhibition assays have enabled simultaneous measurement of cytokines and small molecules. Finally, AIR has also been used to measure affinity constants, kinetic and at equilibrium. In this review, we give an overview of AIR biosensing technologies and present the latest AIR advances.


Asunto(s)
Técnicas Biosensibles , Gripe Humana , Humanos , Técnicas Biosensibles/métodos , Anticuerpos , Análisis por Matrices de Proteínas , Citocinas
2.
PLoS One ; 18(2): e0277846, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36749755

RESUMEN

Immune responses to COVID-19 infection and vaccination are individual and varied. There is a need to understand the timeline of vaccination efficacy against current and yet to be discovered viral mutations. Assessing immunity to SARS-CoV-2 in the context of immunity to other respiratory viruses is also valuable. Here we demonstrate the capability of a fully automated prototype Arrayed Imaging Reflectometry system to perform reliable longitudinal serology against a 34-plex respiratory array. The array contains antigens for respiratory syncytial virus, seasonal influenza, common human coronaviruses, MERS, SARS-CoV-1, and SARS-CoV-2. AIR measures a change in reflectivity due to the binding of serum antibodies to the antigens on the array. Samples were collected from convalescent COVID-19 donors and individuals vaccinated with a two-dose mRNA vaccine regimen. Vaccinated samples were collected prior to the first dose, one week after the first dose, one week after the second dose, and monthly thereafter. Information following booster dose and/or breakthrough infection is included for a subset of subjects. Longitudinal samples of vaccinated individuals demonstrate a rise and fall of SARS-CoV-2 spike antibodies in agreement with general knowledge of the adaptive immune response and other studies. Linear Regression analysis was performed to understand the relationship between antibodies binding to different antigens on the array. Our analysis identified strong correlations between closely related influenza virus strains as well as correlations between SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. A small test of using diluted whole blood from a fingerstick provided clean arrays with antibody binding comparable to serum. Potential applications include assessing immunity in the context of exposure to multiple respiratory viruses, clinical serology, population monitoring to facilitate public health recommendations, and vaccine development against new viruses and virus mutations.


Asunto(s)
COVID-19 , Humanos , Antivirales , SARS-CoV-2 , Formación de Anticuerpos , Anticuerpos Antivirales , Vacunación
3.
Pathogens ; 11(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35215130

RESUMEN

Infection with the ß-coronavirus SARS-CoV-2 typically generates strong virus-specific antibody production. Antibody responses against novel features of SARS-CoV-2 proteins require naïve B cell activation, but there is a growing appreciation that conserved regions are recognized by pre-existing memory B cells (MBCs) generated by endemic coronaviruses. The current study investigated the role of pre-existing cross-reactive coronavirus memory in the antibody response to the viral spike (S) and nucleocapsid (N) proteins following SARS-CoV-2 infection. The breadth of reactivity of circulating antibodies, plasmablasts, and MBCs was analyzed. Acutely infected subjects generated strong IgG responses to the S protein, including the novel receptor binding domain, the conserved S2 region, and to the N protein. The response included reactivity to the S of endemic ß-coronaviruses and, interestingly, to the N of an endemic α-coronavirus. Both mild and severe infection expanded IgG MBC populations reactive to the S of SARS-CoV-2 and endemic ß-coronaviruses. Avidity of S-reactive IgG antibodies and MBCs increased after infection. Overall, findings indicate that the response to the S and N of SARS-CoV-2 involves pre-existing MBC activation and adaptation to novel features of the proteins, along with the potential of imprinting to shape the response to SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...