Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 155: 105552, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937212

RESUMEN

The aim of this study was to use a combined in vitro-in silico approach to develop a physiologically based pharmacokinetic model (PBPK) that predicts the bioavailability of albendazole (ABZ), a BCS class II/IV lipophilic weak base, and simulates its main metabolite albendazole sulphoxide (ABZSO) after oral administration of the current marketed dose of 400 mg in the fasted state. In vitro data was collected from solubility and dissolution tests performed with biorelevant media and transfer tests were carried out to evaluate the supersaturation and precipitation characteristics of ABZ upon gastric emptying. These in vitro results were used as biopharmaceutical inputs together with ABZ physicochemical properties including also permeability and in vitro metabolism data and information gathered from different clinical trials reported in the literature, were used to enable PBPK models to be developed using GastroPlus™ (version 9.7). As expected for this weak base with pKa = 3.6, ABZ exhibited a pronounced pH dependent solubility, with the solubility and extent of dissolution being greater at gastric pH and dropping significantly in the intestinal environment suggesting supersaturation and precipitation upon gastric emptying, which was confirmed by the transfer model experiments. PBPK models were set up for heathy volunteers using a full PBPK modeling approach and by implementing dynamic fluid volumes in the ACAT gut physiology in GastroPlus™. When coupling in vitro data (solubility values, dissolution rate and precipitation rate constant, etc.) for ABZ and with fitted values for the Vdss and liver systemic clearance of the sulfoxide metabolite to the PBPK model, the simulated profiles successfully predicated plasma concentrations of ABZ at 400 mg dose and simulated ABZSO at different ABZ dose levels and with different study populations, indicating the usefulness of combing in vitro biorelevant tools with PBPK modeling for the accurate prediction of ABZ bioavailability. The results obtained in this study also helped confirm that ABZ behaves as a BCS class IV compound.


Asunto(s)
Albendazol , Administración Oral , Albendazol/análogos & derivados , Disponibilidad Biológica , Simulación por Computador , Humanos , Solubilidad
2.
J Pharm Pharmacol ; 71(4): 581-602, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29635685

RESUMEN

OBJECTIVES: In pharmaceutical drug development, preclinical tests in animal models are essential to demonstrate whether the new drug is orally bioavailable and to gain a first insight into in vivo pharmacokinetic parameters that can subsequently be used to predict human values. Despite significant advances in the development of bio-predictive in vitro models and increasing ethical expectations for reducing the number of animals used for research purposes, there is still a need for appropriately selected pre-clinical in vivo testing to provide guidance on the decision to progress to testing in humans. The selection of the appropriate animal models is essential both to maximise the learning that can be obtained from such experiments and to avoid unnecessary testing in a range of species. KEY FINDINGS: The present review, provides an insight into the suitability of the pig model for predicting oral bioavailability in humans, by comparing the conditions in the GIT. It also contains a comparison between the bioavailability of compounds dosed to both humans and pigs, to provide an insight into the relative correlation and examples on why a lack of correlation may be observed. SUMMARY: While there is a general trend towards predicting human bioavailability from pig data, there is considerable variability in the data set, most likely reflecting species specific differences in individual drug metabolism. Nonetheless, the correlation between pigs vs. humans was comparable to that reported for dogs vs. humans. The presented data demonstrate the suitability of the pig as a preclinical model to predict bioavailability in human.


Asunto(s)
Desarrollo de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Modelos Animales , Administración Oral , Animales , Disponibilidad Biológica , Perros , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo , Especificidad de la Especie , Porcinos
3.
J Pharm Pharmacol ; 71(4): 536-556, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29956338

RESUMEN

OBJECTIVES: Drug precipitation in vivo poses a significant challenge for the pharmaceutical industry. During the drug development process, the impact of drug supersaturation or precipitation on the in vivo behaviour of drug products is evaluated with in vitro techniques. This review focuses on the small and full scale in vitro methods to assess drug precipitation in the fasted small intestine. KEY FINDINGS: Many methods have been developed in an attempt to evaluate drug precipitation in the fasted state, with varying degrees of complexity and scale. In early stages of drug development, when drug quantities are typically limited, small-scale tests facilitate an early evaluation of the potential precipitation risk in vivo and allow rapid screening of prototype formulations. At later stages of formulation development, full-scale methods are necessary to predict the behaviour of formulations at clinically relevant doses. Multicompartment models allow the evaluation of drug precipitation after transfer from stomach to the upper small intestine. Optimisation of available biopharmaceutics tools for evaluating precipitation in the fasted small intestine is crucial for accelerating the development of novel breakthrough medicines and reducing the development costs. SUMMARY: Despite the progress from compendial quality control dissolution methods, further work is required to validate the usefulness of proposed setups and to increase their biorelevance, particularly in simulating the absorption of drug along the intestinal lumen. Coupling results from in vitro testing with physiologically based pharmacokinetic modelling holds significant promise and requires further evaluation.


Asunto(s)
Precipitación Química , Desarrollo de Medicamentos/métodos , Intestino Delgado/metabolismo , Animales , Simulación por Computador , Industria Farmacéutica/métodos , Ayuno/fisiología , Humanos , Técnicas In Vitro , Absorción Intestinal , Modelos Biológicos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Solubilidad
4.
J Pharm Pharmacol ; 71(4): 643-673, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30062750

RESUMEN

OBJECTIVES: Drugs used to treat gastrointestinal diseases (GI drugs) are widely used either as prescription or over-the-counter (OTC) medications and belong to both the 10 most prescribed and 10 most sold OTC medications worldwide. The objective of this review article is to discuss the most frequent interactions between GI and other drugs, including identification of the mechanisms behind these interactions, where possible. KEY FINDINGS: Current clinical practice shows that in many cases, these drugs are administered concomitantly with other drug products. Due to their metabolic properties and mechanisms of action, the drugs used to treat gastrointestinal diseases can change the pharmacokinetics of some coadministered drugs. In certain cases, these interactions can lead to failure of treatment or to the occurrence of serious adverse events. The mechanism of interaction depends highly on drug properties and differs among therapeutic categories. Understanding these interactions is essential to providing recommendations for optimal drug therapy. SUMMARY: Interactions with GI drugs are numerous and can be highly significant clinically in some cases. While alterations in bioavailability due to changes in solubility, dissolution rate, GI transit and metabolic interactions can be (for the most part) easily identified, interactions that are mediated through other mechanisms, such as permeability or microbiota, are less well-understood. Future work should focus on characterising these aspects.


Asunto(s)
Interacciones Farmacológicas , Fármacos Gastrointestinales/administración & dosificación , Enfermedades Gastrointestinales/tratamiento farmacológico , Animales , Disponibilidad Biológica , Fármacos Gastrointestinales/química , Fármacos Gastrointestinales/farmacocinética , Humanos , Medicamentos sin Prescripción/administración & dosificación , Medicamentos sin Prescripción/química , Medicamentos sin Prescripción/farmacocinética , Medicamentos bajo Prescripción/administración & dosificación , Medicamentos bajo Prescripción/química , Medicamentos bajo Prescripción/farmacocinética , Solubilidad
5.
Mol Pharm ; 14(12): 4305-4320, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28771009

RESUMEN

Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling. A similar concept can be applied to solubility and dissolution experiments whereby mechanistic modeling can be used to estimate intrinsic parameters required for mechanistic oral absorption simulation in vivo. However, this approach has not widely been applied within an integrated workflow. We present a stepwise modeling approach where relevant biopharmaceutics parameters for ketoconazole (KTZ) are determined and/or confirmed from the modeling of in vitro experiments before being directly used within a PBPK model. Modeling was applied to various in vitro experiments, namely: (a) aqueous solubility profiles to determine intrinsic solubility, salt limiting solubility factors and to verify pKa; (b) biorelevant solubility measurements to estimate bile-micelle partition coefficients; (c) fasted state simulated gastric fluid (FaSSGF) dissolution for formulation disintegration profiling; and (d) transfer experiments to estimate supersaturation and precipitation parameters. These parameters were then used within a PBPK model to predict the dissolved and total (i.e., including the precipitated fraction) concentrations of KTZ in the duodenum of a virtual population and compared against observed clinical data. The developed model well characterized the intraluminal dissolution, supersaturation, and precipitation behavior of KTZ. The mean simulated AUC0-t of the total and dissolved concentrations of KTZ were comparable to (within 2-fold of) the corresponding observed profile. Moreover, the developed PBPK model of KTZ successfully described the impact of supersaturation and precipitation on the systemic plasma concentration profiles of KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development.


Asunto(s)
Liberación de Fármacos , Absorción Intestinal/fisiología , Cetoconazol/farmacocinética , Modelos Biológicos , Absorción Fisiológica , Administración Oral , Biofarmacia/métodos , Química Farmacéutica , Simulación por Computador , Humanos , Modelos Químicos , Permeabilidad , Solubilidad
6.
Eur J Pharm Sci ; 105: 108-118, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28473227

RESUMEN

The present study investigated the ability of the in vitro transfer model and an in vivo pharmacokinetic study in rats to investigate the supersaturation and precipitation behaviour of albendazole (ABZ) relative to data from a human intestinal aspiration study reported in the literature. Two lipid based formulation systems, a hydroxypropyl-ß-cyclodextrin (HPßCD) solution and the addition of a crystallization inhibitor (HPMC-E5) on the behaviour of ABZ was investigated. These formulations were investigated to represent differences in their ability to facilitate supersaturation within the small intestine. Overall, both the in vitro transfer model and the in vivo rat study were able to rank order the formulations (as aqueous suspension±HPMC

Asunto(s)
Albendazol/farmacocinética , Intestino Delgado/metabolismo , Modelos Biológicos , 2-Hidroxipropil-beta-Ciclodextrina/química , Albendazol/sangre , Albendazol/química , Animales , Precipitación Química , Humanos , Derivados de la Hipromelosa/química , Masculino , Ratas Sprague-Dawley , Solubilidad
7.
Eur J Pharm Sci ; 100: 42-55, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28011125

RESUMEN

The aim of this study was to optimize the in vitro transfer model and to increase its biorelevance to more accurately mimic the in vivo supersaturation and precipitation behaviour of weak basic drugs. Therefore, disintegration of the formulation, volumes of the stomach and intestinal compartments, transfer rate, bile salt concentration, pH range and paddle speed were varied over a physiological relevant range. The supersaturation and precipitation data from these experiments for Ketoconazole (KTZ) were coupled to physiologically based pharmacokinetic (PBPK) model using Stella® software, which also incorporated the disposition kinetics of KTZ taken from the literature, in order to simulate the oral absorption and plasma profile in humans. As expected for a poorly soluble weak base, KTZ demonstrated supersaturation followed by precipitation under various in vitro conditions simulating the proximal small intestine with the results influenced by transfer rate, hydrodynamics, volume, bile salt concentration and pH values. When the in vitro data representing the "average" GI conditions was coupled to the PBPK model, the simulated profiles came closest to the observed mean plasma profiles for KTZ. In line with the high permeability of KTZ, the simulated profiles were highly influenced by supersaturation whilst precipitation was not predicted to occur in vivo. A physiological relevant in vitro "standard" transfer model setup to investigate supersaturation and precipitation was established. For translating the in vitro data to the in vivo setting, it is important that permeability is considered which can be achieved by coupling the in vitro data to PBPK modelling.


Asunto(s)
Cetoconazol/farmacocinética , Modelos Biológicos , Antifúngicos/sangre , Antifúngicos/química , Antifúngicos/farmacocinética , Mucosa Gástrica/metabolismo , Humanos , Absorción Intestinal , Intestino Delgado/metabolismo , Cetoconazol/sangre , Cetoconazol/química , Solubilidad
8.
Eur J Pharm Biopharm ; 96: 207-16, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26215636

RESUMEN

Novel formulations that overcome the solubility limitations of poorly water soluble drugs (PWSD) are becoming ever more critical to a drug development process inundated with these compounds. There is a clear need for developing bio-enabling formulation approaches to improve oral bioavailability for PWSD, but also to establish a range of predictive in vitro and in silico biopharmaceutics based tools for guiding formulation design and forecasting in vivo effects. The dual aim of this study was to examine the potential for a novel lipid based formulation, termed a lipidic dispersion, to enhance fasted state oral bioavailability of fenofibrate, while also assessing the predictive ability of biorelevant in vitro and in silico testing. Formulation as a lipidic dispersion improved both dissolution and solubilisation of fenofibrate through a combination of altered solid state characteristics and incorporation of solubilising lipidic excipients. These changes resulted in an increased rate of absorption and increased maximal plasma concentrations compared to a commercial, micronised product (Lipantil® Micro) in a pig model. Combination of biorelevant in vitro measurements with in silico physiologically based pharmacokinetic (PBPK) modelling resulted in an accurate prediction of formulation performance and forecasts a reduction in food effects on fenofibrate bioavailability through maximising its fasted state dissolution.


Asunto(s)
Fenofibrato/farmacocinética , Hipolipemiantes/farmacocinética , Aceite de Oliva/química , Vehículos Farmacéuticos/química , Polietilenglicoles/química , Polisorbatos/química , Povidona/química , Tensoactivos/química , Animales , Disponibilidad Biológica , Biología Computacional , Estudios Cruzados , Composición de Medicamentos , Liberación de Fármacos , Excipientes/química , Sistemas Especialistas , Fenofibrato/sangre , Fenofibrato/química , Fenofibrato/metabolismo , Interacciones Alimento-Droga , Hipolipemiantes/sangre , Hipolipemiantes/química , Hipolipemiantes/metabolismo , Absorción Intestinal , Masculino , Distribución Aleatoria , Solubilidad , Sus scrofa
9.
Eur J Pharm Biopharm ; 86(3): 427-37, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24184675

RESUMEN

The objectives of this study were to characterise three prototype fenofibrate lipid-based formulations using a range of in vitro tests with differing levels of complexity and to assess the extent to which these methods provide additional insight into in vivo findings. Three self-emulsifying drug delivery systems (SEDDS) were prepared: a long chain (LC) Type IIIA SEDDS, a medium chain (MC) Type IIIA SEDDS, and a Type IIIB/IV SEDDS containing surfactants only (SO). Dilution, dispersion and digestion tests were performed to assess solubilisation and precipitation behaviour in vitro. Focussed beam reflectance measurements and solid state characterisation of the precipitate was conducted. Oral bioavailability was evaluated in landrace pigs. Dilution and dispersion testing revealed that all three formulations were similar in terms of maintaining fenofibrate in a solubilised state on dispersion in biorelevant media. During in vitro digestion, the Type IIIA formulations displayed limited drug precipitation (<5%), whereas the Type IIIB/IV formulation displayed extensive drug precipitation (~70% dose). Solid state analysis confirmed that precipitated fenofibrate was crystalline. The oral bioavailability was similar for the three lipid formulations (65-72%). In summary, the use of LC versus MC triglycerides in Type IIIA SEDDS had no impact on the bioavailability of fenofibrate. The extensive precipitation observed with the Type IIIB/IV formulation during in vitro digestion did not adversely impact fenofibrate bioavailability in vivo, relative to the Type IIIA formulations. These results were predicted suitably using in vitro dilution and dispersion testing, whereas the in vitro digestion method failed to predict the outcome of the in vivo study.


Asunto(s)
Química Farmacéutica/métodos , Fenofibrato/química , Hipolipemiantes/química , Lípidos/química , Animales , Predicción , Masculino , Porcinos , Difracción de Rayos X/métodos
10.
Eur J Pharm Sci ; 57: 342-66, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-23988843

RESUMEN

Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored. More recently, the switch to assessing drug products in a more biorelevant and mechanistic manner has advanced the understanding of drug formulation behavior. Notwithstanding this evolution, predicting the in vivo biopharmaceutical performance of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro tools. Development and optimizing innovative, predictive Oral Biopharmaceutical Tools is the main target of the OrBiTo project within the Innovative Medicines Initiative (IMI) framework. A combination of physico-chemical measurements, in vitro tests, in vivo methods, and physiology-based pharmacokinetic modeling is expected to create a unique knowledge platform, enabling the bottlenecks in drug development to be removed and the whole process of drug development to become more efficient. As part of the basis for the OrBiTo project, this review summarizes the current status of predictive in vitro assessment tools for formulation behavior. Both pharmacopoeia-listed apparatus and more advanced tools are discussed. Special attention is paid to major issues limiting the predictive power of traditional tools, including the simulation of dynamic changes in gastrointestinal conditions, the adequate reproduction of gastrointestinal motility, the simulation of supersaturation and precipitation, and the implementation of the solubility-permeability interplay. It is anticipated that the innovative in vitro biopharmaceutical tools arising from the OrBiTo project will lead to improved predictions for in vivo behavior of drug formulations in the GI tract.


Asunto(s)
Biofarmacia/métodos , Modelos Biológicos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Administración Oral , Disponibilidad Biológica , Formas de Dosificación , Motilidad Gastrointestinal , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Permeabilidad , Preparaciones Farmacéuticas/química , Farmacopeas como Asunto , Solubilidad
11.
Eur J Pharm Sci ; 57: 300-21, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24060672

RESUMEN

Drug absorption from the gastrointestinal (GI) tract is a highly complex process dependent upon numerous factors including the physicochemical properties of the drug, characteristics of the formulation and interplay with the underlying physiological properties of the GI tract. The ability to accurately predict oral drug absorption during drug product development is becoming more relevant given the current challenges facing the pharmaceutical industry. Physiologically-based pharmacokinetic (PBPK) modeling provides an approach that enables the plasma concentration-time profiles to be predicted from preclinical in vitro and in vivo data and can thus provide a valuable resource to support decisions at various stages of the drug development process. Whilst there have been quite a few successes with PBPK models identifying key issues in the development of new drugs in vivo, there are still many aspects that need to be addressed in order to maximize the utility of the PBPK models to predict drug absorption, including improving our understanding of conditions in the lower small intestine and colon, taking the influence of disease on GI physiology into account and further exploring the reasons behind population variability. Importantly, there is also a need to create more appropriate in vitro models for testing dosage form performance and to streamline data input from these into the PBPK models. As part of the Oral Biopharmaceutical Tools (OrBiTo) project, this review provides a summary of the current status of PBPK models available. The current challenges in PBPK set-ups for oral drug absorption including the composition of GI luminal contents, transit and hydrodynamics, permeability and intestinal wall metabolism are discussed in detail. Further, the challenges regarding the appropriate integration of results from in vitro models, such as consideration of appropriate integration/estimation of solubility and the complexity of the in vitro release and precipitation data, are also highlighted as important steps to advancing the application of PBPK models in drug development. It is expected that the "innovative" integration of in vitro data from more appropriate in vitro models and the enhancement of the GI physiology component of PBPK models, arising from the OrBiTo project, will lead to a significant enhancement in the ability of PBPK models to successfully predict oral drug absorption and advance their role in preclinical and clinical development, as well as for regulatory applications.


Asunto(s)
Biofarmacia/métodos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Administración Oral , Animales , Química Farmacéutica , Formas de Dosificación , Tracto Gastrointestinal/metabolismo , Humanos , Absorción Intestinal , Modelos Biológicos , Permeabilidad , Preparaciones Farmacéuticas/química , Solubilidad
12.
Eur J Pharm Biopharm ; 85(3 Pt B): 1274-84, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23500116

RESUMEN

Lipid-based formulations have established a significant role in the formulation of poorly soluble drugs for oral administration. In order to better understand their potential advantages over solid oral dosage forms, we studied the solubility and dissolution/precipitation characteristics of three self-microemulsifying drug delivery system (SMEDDS) formulations and one suspension of micronized fenofibrate in lipid excipients, for which pharmacokinetic studies had already been reported in the open literature. The in vitro dispersion/dissolution studies were carried out in biorelevant media using USP II apparatus. These were followed up by in silico simulations using STELLA® software, in which not only dispersion/dissolution, but also the precipitation and re-dissolution of fenofibrate was taken into account. While unformulated drug exhibited poor solubility (0.22 µg/mL in FaSSGF and 4.31 µg/mL in FaSSIF-V2(PO4)) and dissolved less than 2% in dissolution tests, the solubility of fenofibrate in the presence of the lipid excipients increased dramatically (e.g., to 65.44 µg/mL in the presence of the Myritol 318/TPGS/Tween 80 SMEDDS) and there was an attendant increase in the dissolution (over 80% from capsules containing the Myritol 318/TPGS/Tween 80 SMEDDS and about 20% from the dispersion of fenofibrate in lipid excipients). For the four lipid-based fenofibrate formulations studied, combining in vitro data in biorelevant media with in silico simulation resulted in accurate prediction of the in vivo human plasma profiles. The point estimates of C(max) and AUC ratio calculated from the in silico and in vivo plasma profiles fell within the 0.8-1.25 range for the SMEDDS solution and capsule formulations, suggesting an accurate simulation of the in vivo profiles. This similarity was confirmed by calculation of the respective f2 factors. Sensitivity analysis of the simulation profiles revealed that the SMEDDS formulations had virtually removed any dependency of absorption on the dissolution rate in the small intestine, whereas for the dispersion in lipid excipients, this barrier remained. Such results pave the way to optimizing the performance of oral lipid-based formulations via an in vitro-in silico-in vivo approach.


Asunto(s)
Fenofibrato/sangre , Fenofibrato/química , Lípidos/química , Absorción , Administración Oral , Área Bajo la Curva , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Simulación por Computador , Difusión , Sistemas de Liberación de Medicamentos , Excipientes/química , Ayuno , Jugo Gástrico/química , Humanos , Absorción Intestinal/efectos de los fármacos , Tamaño de la Partícula , Permeabilidad , Sensibilidad y Especificidad , Programas Informáticos , Solubilidad , Tensoactivos
13.
J Pharm Pharmacol ; 56(1): 43-51, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14980000

RESUMEN

Solubility and dissolution relationships in the gastrointestinal tract can be critical for the oral bioavailability of poorly soluble drugs. In the case of poorly soluble weak bases, the possibility of drug precipitation upon entry into the small intestine may also affect the amount of drug available for uptake through the intestinal mucosa. To simulate the transfer out of the stomach into the intestine, a transfer model was devised, in which a solution of the drug in simulated gastric fluid is continuously pumped into a simulated intestinal fluid, and drug precipitation in the acceptor medium is examined via concentration-time measurements. The in-vitro precipitation of three poorly soluble weakly basic drugs, dipyridamole, BIBU 104 XX and BIMT 17 BS, was investigated. For all three, extensive supersaturation was achieved in the acceptor medium. Under simulated fasted-state conditions, precipitation occurred for all three compounds whereas under simulated fed-state conditions, the higher concentrations of bile components and the lower pH value in the acceptor medium inhibited precipitation at concentrations corresponding to usual doses in all cases. Comparison with pharmacokinetic data indicated that a combination of transfer model data with solubility and dissolution profiles should lead to better predictions of in-vivo behaviour of poorly soluble weak bases.


Asunto(s)
Bencimidazoles/química , Compuestos de Bifenilo/química , Dipiridamol/química , Mucosa Gástrica , Intestino Delgado , Modelos Biológicos , Pirrolidinas/química , Estómago , Bencimidazoles/farmacocinética , Bilis/química , Compuestos de Bifenilo/farmacocinética , Precipitación Química , Dipiridamol/farmacocinética , Ayuno , Mucosa Gástrica/metabolismo , Concentración de Iones de Hidrógeno , Intestino Delgado/metabolismo , Pirrolidinas/farmacocinética , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...