Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Syst Biol Appl ; 7(1): 7, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504769

RESUMEN

The ToxCast in vitro screening program has provided concentration-response bioactivity data across more than a thousand assay endpoints for thousands of chemicals found in our environment and commerce. However, most ToxCast screening assays have evaluated individual biological targets in cancer cell lines lacking integrated physiological functionality (such as receptor signaling, metabolism). We evaluated differentiated HepaRGTM cells, a human liver-derived cell model understood to effectively model physiologically relevant hepatic signaling. Expression of 93 gene transcripts was measured by quantitative polymerase chain reaction using Fluidigm 96.96 dynamic arrays in response to 1060 chemicals tested in eight-point concentration-response. A Bayesian framework quantitatively modeled chemical-induced changes in gene expression via six transcription factors including: aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, farnesoid X receptor, androgen receptor, and peroxisome proliferator-activated receptor alpha. For these chemicals the network model translates transcriptomic data into Bayesian inferences about molecular targets known to activate toxicological adverse outcome pathways. These data also provide new insights into the molecular signaling network of HepaRGTM cell cultures.


Asunto(s)
Hepatocitos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Toxicogenética/métodos , Teorema de Bayes , Técnicas de Cultivo de Célula , Línea Celular , Humanos , Hígado/citología , Bibliotecas de Moléculas Pequeñas , Factores de Transcripción/efectos de los fármacos , Transcriptoma/genética
3.
Toxicol Sci ; 174(2): 189-209, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32073639

RESUMEN

The Stemina devTOX quickPredict platform is a human pluripotent stem cell-based assay that predicts the developmental toxicity potential based on changes in cellular metabolism following chemical exposure [Palmer, J. A., Smith, A. M., Egnash, L. A., Conard, K. R., West, P. R., Burrier, R. E., Donley, E. L. R., and Kirchner, F. R. (2013). Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening. Birth Defects Res. B Dev. Reprod. Toxicol. 98, 343-363]. Using this assay, we screened 1065 ToxCast phase I and II chemicals in single-concentration or concentration-response for the targeted biomarker (ratio of ornithine to cystine secreted or consumed from the media). The dataset from the Stemina (STM) assay is annotated in the ToxCast portfolio as STM. Major findings from the analysis of ToxCast_STM dataset include (1) 19% of 1065 chemicals yielded a prediction of developmental toxicity, (2) assay performance reached 79%-82% accuracy with high specificity (> 84%) but modest sensitivity (< 67%) when compared with in vivo animal models of human prenatal developmental toxicity, (3) sensitivity improved as more stringent weights of evidence requirements were applied to the animal studies, and (4) statistical analysis of the most potent chemical hits on specific biochemical targets in ToxCast revealed positive and negative associations with the STM response, providing insights into the mechanistic underpinnings of the targeted endpoint and its biological domain. The results of this study will be useful to improving our ability to predict in vivo developmental toxicants based on in vitro data and in silico models.


Asunto(s)
Alternativas a las Pruebas en Animales , Células Madre Pluripotentes/efectos de los fármacos , Pruebas de Toxicidad , Animales , Bioensayo , Biomarcadores/metabolismo , Línea Celular , Bases de Datos Factuales , Relación Dosis-Respuesta a Droga , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/patología , Medición de Riesgo
4.
Bioinformatics ; 33(4): 618-620, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27797781

RESUMEN

Motivation: Large high-throughput screening (HTS) efforts are widely used in drug development and chemical toxicity screening. Wide use and integration of these data can benefit from an efficient, transparent and reproducible data pipeline. Summary: The tcpl R package and its associated MySQL database provide a generalized platform for efficiently storing, normalizing and dose-response modeling of large high-throughput and high-content chemical screening data. The novel dose-response modeling algorithm has been tested against millions of diverse dose-response series, and robustly fits data with outliers and cytotoxicity-related signal loss. Availability and Implementation: tcpl is freely available on the Comprehensive R Archive Network under the GPL-2 license. Contact: martin.matt@epa.gov.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Modelos Biológicos , Programas Informáticos , Pruebas de Toxicidad/métodos , Algoritmos , Simulación por Computador , Relación Dosis-Respuesta a Droga
6.
Toxicol Sci ; 152(2): 323-39, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27208079

RESUMEN

Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, responses of 1060 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a battery of 815 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress/cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least 2 viability/cytotoxicity assays within the concentration range tested (typically up to 100 µM) activated a median of 12% of assay endpoints whereas those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (eg, receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a greater number of specific biomolecular interactions are generally designed to be bioactive (pharmaceuticals or pesticidal active ingredients), whereas intentional food-use chemicals tended to show the fewest specific interactions. The analyses presented here provide context for use of these data in ongoing studies to predict in vivo toxicity from chemicals lacking extensive hazard assessment.


Asunto(s)
Bioensayo/métodos , Estrés Fisiológico , Pruebas de Toxicidad/métodos , Humanos , Técnicas In Vitro
7.
Chem Res Toxicol ; 26(6): 878-95, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23611293

RESUMEN

Understanding potential health risks is a significant challenge due to the large numbers of diverse chemicals with poorly characterized exposures and mechanisms of toxicities. The present study analyzes 976 chemicals (including failed pharmaceuticals, alternative plasticizers, food additives, and pesticides) in Phases I and II of the U.S. EPA's ToxCast project across 331 cell-free enzymatic and ligand-binding high-throughput screening (HTS) assays. Half-maximal activity concentrations (AC50) were identified for 729 chemicals in 256 assays (7,135 chemical-assay pairs). Some of the most commonly affected assays were CYPs (CYP2C9 and CYP2C19), transporters (mitochondrial TSPO, norepinephrine, and dopaminergic), and GPCRs (aminergic). Heavy metals, surfactants, and dithiocarbamate fungicides showed promiscuous but distinctly different patterns of activity, whereas many of the pharmaceutical compounds showed promiscuous activity across GPCRs. Literature analysis confirmed >50% of the activities for the most potent chemical-assay pairs (54) but also revealed 10 missed interactions. Twenty-two chemicals with known estrogenic activity were correctly identified for the majority (77%), missing only the weaker interactions. In many cases, novel findings for previously unreported chemical-target combinations clustered with known chemical-target interactions. Results from this large inventory of chemical-biological interactions can inform read-across methods as well as link potential targets to molecular initiating events in adverse outcome pathways for diverse toxicities.


Asunto(s)
Enzimas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Compuestos Orgánicos/toxicidad , Transducción de Señal/efectos de los fármacos , Animales , Cobayas , Humanos , Proteínas de Transporte de Membrana/metabolismo , Ratas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo
8.
Int J Mol Sci ; 13(2): 1805-1831, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22408426

RESUMEN

Computational toxicology combines data from high-throughput test methods, chemical structure analyses and other biological domains (e.g., genes, proteins, cells, tissues) with the goals of predicting and understanding the underlying mechanistic causes of chemical toxicity and for predicting toxicity of new chemicals and products. A key feature of such approaches is their reliance on knowledge extracted from large collections of data and data sets in computable formats. The U.S. Environmental Protection Agency (EPA) has developed a large data resource called ACToR (Aggregated Computational Toxicology Resource) to support these data-intensive efforts. ACToR comprises four main repositories: core ACToR (chemical identifiers and structures, and summary data on hazard, exposure, use, and other domains), ToxRefDB (Toxicity Reference Database, a compilation of detailed in vivo toxicity data from guideline studies), ExpoCastDB (detailed human exposure data from observational studies of selected chemicals), and ToxCastDB (data from high-throughput screening programs, including links to underlying biological information related to genes and pathways). The EPA DSSTox (Distributed Structure-Searchable Toxicity) program provides expert-reviewed chemical structures and associated information for these and other high-interest public inventories. Overall, the ACToR system contains information on about 400,000 chemicals from 1100 different sources. The entire system is built using open source tools and is freely available to download. This review describes the organization of the data repository and provides selected examples of use cases.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Ecotoxicología/métodos , United States Environmental Protection Agency , Algoritmos , Bases de Datos Factuales/normas , Bases de Datos Factuales/provisión & distribución , Ecotoxicología/organización & administración , Contaminantes Ambientales/toxicidad , Humanos , Programas Informáticos , Estados Unidos , United States Environmental Protection Agency/organización & administración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...