Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39063747

RESUMEN

This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone are reviewed. A review of methods for mechanical and in vivo characterization of IOLs is presented as a prospective research area, since there are only a few available technologies, even though these properties are vital to ensure medical safety and suitability for clinical use, especially if long-term function is considered. IOLs represent permanent implants to replace the natural lens or for correcting vision, with the first commercial foldable lens made of silicone. Biological aspects of posterior capsular opacification have been reviewed, including the effects of the implanted silicone IOL. However, certain issues with silicone IOLs are still challenging and some conditions can prevent its application in all patients. The latest trends in nanotechnology solutions have been reviewed. Surface modifications of silicone IOLs are an efficient approach to further improve biocompatibility or to enable drug-eluting function. Different surface modifications, including coatings, can provide long-term treatments for various medical conditions or medical diagnoses through the incorporation of sensory functions. It is essential that IOL optical characteristics remain unchanged in case of drug incorporation and the application of nanoparticles can enable it. However, clinical trials related to these advanced technologies are still missing, thus preventing their clinical applications at this moment.

2.
Biomimetics (Basel) ; 9(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38534854

RESUMEN

This review will present the latest research related to the production and application of spider silk and silk-based materials in reconstructive and regenerative medicine and tissue engineering, with a focus on musculoskeletal tissues, and including skin regeneration and tissue repair of bone and cartilage, ligaments, muscle tissue, peripheral nerves, and artificial blood vessels. Natural spider silk synthesis is reviewed, and the further recombinant production of spider silk proteins. Research insights into possible spider silk structures, like fibers (1D), coatings (2D), and 3D constructs, including porous structures, hydrogels, and organ-on-chip designs, have been reviewed considering a design of bioactive materials for smart medical implants and drug delivery systems. Silk is one of the toughest natural materials, with high strain at failure and mechanical strength. Novel biomaterials with silk fibroin can mimic the tissue structure and promote regeneration and new tissue growth. Silk proteins are important in designing tissue-on-chip or organ-on-chip technologies and micro devices for the precise engineering of artificial tissues and organs, disease modeling, and the further selection of adequate medical treatments. Recent research indicates that silk (films, hydrogels, capsules, or liposomes coated with silk proteins) has the potential to provide controlled drug release at the target destination. However, even with clear advantages, there are still challenges that need further research, including clinical trials.

3.
Materials (Basel) ; 16(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614707

RESUMEN

This paper deals with the selection of the optimal material for railway wagons, from among three different steel and three aluminium based materials, by using four different Multicriteria Decision Making Methods (MCDM) and comparing their ranking of the materials. We analysed: Dual-Phase 600 steel, Transformation-Induced Plasticity (TRIP) 700 steel, Twinning-Induced Plasticity (TWIP) steel, Aluminium (Al) alloys, Al 6005-T6, and Al 6082-T6, and porous Al structure with closed cells. Four different MCDM methods were used: VIKOR, TOPSIS, PROMETTHEE and the Weighted aggregated sum product assessment method (WASPAS). Key material properties that were used in the MCDM analysis were: density, yield strength (Y.S.), tensile strength (T.S.), Y.S./T.S. ratio, Youngs modulus (Y.M.), cost and corrosion resistance (C.R.). Research results indicate that aluminium and its alloys prove to be the most suitable material, based on setup criteria. Advanced steels also achieved good ranking, making them a valid option, immediately behind lightweight aluminium alloys. Porous aluminium did not perform well, according to the used MDCM methods, mainly due to the significantly lower strength exhibited by the porous structures in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...