Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 24(5): 102473, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34113819

RESUMEN

The oncogenic function of suppressor of variegation, enhancer of zeste and MYeloid-Nervy-DEAF1-domain family methyltransferase Smyd3 has been implicated in various malignancies, including hepatocellular carcinoma (HCC). Here, we show that targeting Smyd3 by next-generation antisense oligonucleotides (Smyd3-ASO) is an efficient approach to modulate its mRNA levels in vivo and to halt the growth of already initiated liver tumors. Smyd3-ASO treatment dramatically decreased tumor burden in a mouse model of chemically induced HCC and negatively affected the growth rates, migration, oncosphere formation, and xenograft growth capacity of a panel of human hepatic cancer cell lines. Smyd3-ASOs prevented the activation of oncofetal genes and the development of cancer-specific gene expression program. The results point to a mechanism by which Smyd3-ASO treatment blocks cellular de-differentiation, a hallmark feature of HCC development, and, as a result, it inhibits the expansion of hepatic cancer stem cells, a population that has been presumed to resist chemotherapy.

2.
Structure ; 26(5): 695-707.e5, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29606594

RESUMEN

Secretory preproteins carry signal peptides fused amino-terminally to mature domains. They are post-translationally targeted to cross the plasma membrane in non-folded states with the help of translocases, and fold only at their final destinations. The mechanism of this process of postponed folding is unknown, but is generally attributed to signal peptides and chaperones. We herein demonstrate that, during targeting, most mature domains maintain loosely packed folding intermediates. These largely soluble states are signal peptide independent and essential for translocase recognition. These intermediates are promoted by mature domain features: residue composition, elevated disorder, and reduced hydrophobicity. Consequently, a mature domain folds slower than its cytoplasmic structural homolog. Some mature domains could not evolve stable, loose intermediates, and hence depend on signal peptides for slow folding to the detriment of solubility. These unique features of secretory proteins impact our understanding of protein trafficking, folding, and aggregation, and thus place them in a distinct class.


Asunto(s)
Señales de Clasificación de Proteína , Proteínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dominios Proteicos , Pliegue de Proteína , Transporte de Proteínas , Proteínas/metabolismo
3.
J Cell Biol ; 216(5): 1357-1369, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28404644

RESUMEN

Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as preproteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Señales de Clasificación de Proteína , Canales de Translocación SEC/metabolismo , Escherichia coli/citología , Dominios Proteicos , Proteína SecA
4.
Proteomics ; 16(1): 85-97, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26466526

RESUMEN

Biological membranes define cells and cellular compartments and are essential in regulating bidirectional flow of chemicals and signals. Characterizing their protein content therefore is required to determine their function, nevertheless, the comprehensive determination of membrane-embedded sub-proteomes remains challenging. Here, we experimentally characterized the inner membrane proteome (IMP) of the model organism E. coli BL21(DE3). We took advantage of the recent extensive re-annotation of the theoretical E. coli IMP regarding the sub-cellular localization of all its proteins. Using surface proteolysis of IMVs with variable chemical treatments followed by nanoLC-MS/MS analysis, we experimentally identified ∼45% of the expressed IMP in wild type E. coli BL21(DE3) with 242 proteins reported here for the first time. Using modified label-free approaches we quantified 220 IM proteins. Finally, we compared protein levels between wild type cells and those over-synthesizing the membrane-embedded translocation channel SecYEG proteins. We propose that this proteomics pipeline will be generally applicable to the determination of IMP from other bacteria.


Asunto(s)
Proteínas de Escherichia coli/análisis , Escherichia coli/química , Proteoma/análisis , Cromatografía Liquida , Escherichia coli/citología , Proteolisis , Proteómica , Espectrometría de Masas en Tándem
5.
Mol Cell Proteomics ; 12(3): 599-610, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23230279

RESUMEN

Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/análisis , Escherichia coli/metabolismo , Proteoma/análisis , Proteómica/métodos , Cromatografía Liquida , Proteínas de la Membrana/análisis , Nanotecnología/métodos , Espectrometría de Masas en Tándem
6.
Phys Chem Chem Phys ; 13(39): 17852-63, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21892487

RESUMEN

This article reports the full characterisation of the optical properties of a biosynthesised protein consisting of fused cyan fluorescent protein, glucose binding protein and yellow fluorescent protein. The cyan and yellow fluorescent proteins act as donors and acceptors for intramolecular fluorescence resonance energy transfer. Absorption, fluorescence, excitation and fluorescence decays of the compound protein were measured and compared with those of free fluorescent proteins. Signatures of energy transfer were identified in the spectral intensities and fluorescence decays. A model describing the fluorescence properties including energy transfer in terms of rate equations is presented and all relevant parameters are extracted from the measurements. The compound protein changes conformation on binding with calcium ions. This is reflected in a change of energy transfer efficiency between the fluorescent proteins. We track the conformational change and the kinetics of the calcium binding reaction from fluorescence intensity and decay measurements and interpret the results in light of the rate equation model. This visualisation of change in protein conformation has the potential to serve as an analytical tool in the study of protein structure changes in real time, in the development of biosensor proteins and in characterizing protein-drug interactions.


Asunto(s)
Calcio/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas Luminiscentes/análisis , Proteínas de Transporte de Monosacáridos/análisis , Calcio/química , Transferencia de Energía , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Luminiscentes/biosíntesis , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/biosíntesis , Biosíntesis de Proteínas , Conformación Proteica
7.
Methods Mol Biol ; 619: 157-72, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20419410

RESUMEN

Almost one-third of the proteins synthesized in the cytosol of cells ends up in membranes or outside the cell. Secretory polypeptides are synthesized as precursor proteins that carry N-terminal signal sequences. Secretion is catalyzed by the "translocase" that comprises a channel-clamp protein and an ATPase motor. Translocase activities have been fully reconstituted in vitro. This provided powerful tools to examine the role of each component in the reaction. Here we describe protocols for the purification of the secretory preprotein alkaline phosphatase and a series of in vitro assays developed in order to examine the binding of alkaline phosphatase to the translocase, its ability to stimulate ATP hydrolysis, and finally its transfer across the membrane. The assays are applicable to any similar study of secretory preproteins.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Unión Proteica , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA
8.
Cell ; 131(4): 756-69, 2007 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-18022369

RESUMEN

Recognition of signal sequences by cognate receptors controls the entry of virtually all proteins to export pathways. Despite its importance, this process remains poorly understood. Here, we present the solution structure of a signal peptide bound to SecA, the 204 kDa ATPase motor of the Sec translocase. Upon encounter, the signal peptide forms an alpha-helix that inserts into a flexible and elongated groove in SecA. The mode of binding is bimodal, with both hydrophobic and electrostatic interactions mediating recognition. The same groove is used by SecA to recognize a diverse set of signal sequences. Impairment of the signal-peptide binding to SecA results in significant translocation defects. The C-terminal tail of SecA occludes the groove and inhibits signal-peptide binding, but autoinhibition is relieved by the SecB chaperone. Finally, it is shown that SecA interconverts between two conformations in solution, suggesting a simple mechanism for polypeptide translocation.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Canales de Translocación SEC , Proteína SecA , Alineación de Secuencia , Electricidad Estática
9.
Artículo en Inglés | MEDLINE | ID: mdl-18003397

RESUMEN

Our EC-funded project, (FP6 contract No. 031867), "Development of an Implanted Biosensor for Continuous Care and Monitoring System of Diabetic Patients", addresses the pressing needs for the improvement of Blood Glucose monitoring and management through the development of an implanted sensor. This reagentless device integrates a novel nanobiotechnological glucose-sensing array at the heart of a ground-breaking fluorimetric detector, itself using an innovative hydrogel waveguide technology. The implant will wirelessly feed a sustained stream of Glucose values into a networked telemedicine system that will be able to support thousands of diabetic patients, and is planned to eventually integrate an insulin pump, thus fulfilling the ultimate goal of devising a cybernetic, externally supervised "artificial pancreas".


Asunto(s)
Técnicas Biosensibles/instrumentación , Automonitorización de la Glucosa Sanguínea/instrumentación , Glucemia/análisis , Prótesis e Implantes , Telemedicina/instrumentación , Telemetría/instrumentación , Técnicas Biosensibles/métodos , Automonitorización de la Glucosa Sanguínea/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Telemedicina/métodos , Telemetría/métodos
10.
J Mol Biol ; 357(3): 808-19, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16464466

RESUMEN

We present a functional analysis of the last alpha-helical transmembrane segment (TMS12) of UapA, a uric acid-xanthine/H+ symporter in Aspergillus nidulans and member of the nucleobase-ascorbate transporter (NAT) family. First, we performed a systematic mutational analysis of residue F528, located in the middle of TMS12, which was known to be critical for UapA specificity. Substitution of F528 with non-aromatic amino acid residues (Ala, Thr, Ser, Gln, Asn) did not affect significantly the kinetics of UapA for its physiological substrates, but allowed high-capacity transport of several novel purines and pyrimidines. Allele-specific combinations of F528 substitutions with mutations in Q408, a residue involved in purine binding, led to an array of UapA molecules with different kinetic and specificity profiles. We propose that F528 plays the role of a novel-type selectivity filter, which, in conjunction with a distinct purine-binding site, control UapA-mediated substrate translocation. We further studied the role of TMS12 by analysing the effect of its precise deletion and chimeric molecules in which TMS12 was substituted with analogous domains from other NATs. The presence of any of the TMS12 tested was necessary for ER-exit while their specific amino acid composition affected the kinetics of chimeras.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Sustitución de Aminoácidos/genética , Asparagina/genética , Asparagina/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Análisis Mutacional de ADN , Proteínas Fúngicas/genética , Glutamina/genética , Glutamina/metabolismo , Cinética , Proteínas de Transporte de Membrana/genética , Fenilalanina/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato
11.
Mol Membr Biol ; 22(3): 263-75, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16096268

RESUMEN

We compared the interactions of purines and purine analogues with representative fungal and bacterial members of the widespread Nucleobase-Ascorbate Transporter (NAT) family. These are: UapA, a well-studied xanthine-uric acid transporter of A. nidulans, Xut1, a novel transporter from C. albicans, described for the first time in this work, and YgfO, a recently characterized xanthine transporter from E. coli. Using transport inhibition experiments with 64 different purines and purine-related analogues, we describe a kinetic approach to build models on how NAT proteins interact with their substrates. UapA, Xut1 and YgfO appear to bind several substrates via interactions with both the pyrimidine and imidazol rings. Fungal homologues interact with the pyrimidine ring of xanthine and xanthine analogues via H-bonds, principally with N1-H and =O6, and to a lower extent with =O2. The E. coli homologue interacts principally with N3-H and =O2, and less strongly with N1-H and =O6. The basic interaction with the imidazol ring appears to be via a H-bond with N9. Interestingly, while all three homologues recognize xanthines with similar high affinities, interaction with uric acid or/and oxypurinol is transporter-specific. UapA recognizes uric acid with high affinity, principally via three H-bonds with =O2, =O6 and =O8. Xut1 has a 13-fold reduced affinity for uric acid, based on a different set of interactions involving =O8, and probably H atoms from positions N1, N3, N7 or N9. YgfO does not recognize uric acid at all. Both Xut1 and UapA recognize oxypurinol, but use different interactions reflected in a nearly 26-fold difference in their affinities for this drug, while YgfO interacts with this analogue very inefficiently.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Nucleobases/metabolismo , Animales , Aspergillus nidulans , Proteínas Bacterianas/química , Transporte Biológico , Candida albicans , Escherichia coli , Proteínas Fúngicas/química , Proteínas de Transporte de Nucleobases/química , Purinas/metabolismo , Pirimidinas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Xantina/metabolismo
12.
J Mol Biol ; 350(3): 499-513, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15953615

RESUMEN

UapA, a member of the NAT/NCS2 family, is a high affinity, high capacity, uric acid-xanthine/H+ symporter of Aspergillus nidulans. We have previously presented evidence showing that a highly conserved signature motif ([Q/E/P]408-N-X-G-X-X-X-X-T-[R/K/G])417 is involved in UapA function. Here, we present a systematic mutational analysis of conserved residues in or close to the signature motif of UapA. We show that even the most conservative substitutions of residues Q408, N409 and G411 modify the kinetics and specificity of UapA, without affecting targeting in the plasma membrane. Q408 substitutions show that this residue determines both substrate binding and transport catalysis, possibly via interactions with position N9 of the imidazole ring of purines. Residue N409 is an irreplaceable residue necessary for transport catalysis, but is not involved in substrate binding. Residue G411 determines, indirectly, both the kinetics (K(m), V) and specificity of UapA, probably due to its particular property to confer local flexibility in the binding site of UapA. In silico predictions and a search in structural databases strongly suggest that the first part of the NAT signature motif of UapA (Q(408)NNG(411)) should form a loop, the structure of which is mostly affected by mutations in G411. Finally, substitutions of residues T416 and R417, despite being much better tolerated, can also affect the kinetics or the specificity of UapA. Our results show that the NAT signature motif defines the function of the UapA purine translocation pathway and strongly suggest that this might occur by determining the interactions of UapA with the imidazole part of purines.


Asunto(s)
Proteínas Fúngicas/fisiología , Proteínas de Transporte de Membrana/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Transporte Biológico , Catálisis , Membrana Celular/metabolismo , Análisis Mutacional de ADN , Cartilla de ADN/química , Bases de Datos de Proteínas , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fluorescentes Verdes/metabolismo , Imidazoles/química , Concentración 50 Inhibidora , Cinética , Proteínas de Transporte de Membrana/química , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Modelos Químicos , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Purinas/química , Purinas/metabolismo , Programas Informáticos , Especificidad por Sustrato , Xantina/química
13.
Mol Microbiol ; 52(1): 205-16, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15049821

RESUMEN

Aspergillus nidulans possesses three well-characterized purine transporters encoded by the genes uapA, uapC and azgA. Expression of these genes in mycelium is induced by purines and repressed by ammonium or glutamine through the action of the pathway-specific UaY regulator and the general GATA factor AreA respectively. Here, we describe the regulation of expression of purine transporters during conidiospore germination and the onset of mycelium development. In resting conidiospores, mRNA steady-state levels of purine transporter genes and purine uptake activities are undetectable or very low. Both mRNA steady-state levels and purine transport activities increase substantially during the isotropic growth phase of conidial germination. Both processes occur in the absence of purine induction and independently of the nitrogen source present in the medium. The transcriptional activator UaY is dispensable for the germination-induced expression of the three transporter genes. AreA, on the other hand, is essential for the expression of uapA, but not for that of azgA or uapC, during germination. Transcriptional activation of uapA, uapC and azgA during germination is also independent of the presence of a carbon source in the medium. This work establishes the presence of a novel system triggering purine transporter transcription during germination. Similar results have been found in studies on the expression of other transporters in A. nidulans, suggesting that global expression of transporters might operate as a general system for sensing solute availability.


Asunto(s)
Aspergillus nidulans/genética , Aspergillus nidulans/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Nucleobases/genética , Purinas/metabolismo , Activación Transcripcional , Aspergillus nidulans/crecimiento & desarrollo , Northern Blotting , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Genes Fúngicos , Hipoxantina/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Micelio/crecimiento & desarrollo , Proteínas de Transporte de Nucleobases/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Xantina/metabolismo
14.
J Microbiol Methods ; 55(3): 687-95, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14607411

RESUMEN

We systematically investigated the efficiency of Aspergillus nidulans transformation using protoplasts prepared from different stages of conidiospore germination and young mycelium. Using standard integrative plasmids, increased transformation yields were obtained with protoplasts isolated from a specific stage coincident with germ tube emergence. This increase ranged, on the average, from two- to eightfold depending on different plasmids used. Transformation efficiencies with a replicative plasmid were similar to those obtained using previously described methods. Although this observation suggests that elevated transformation efficiencies might be due to increased efficiency of recombination between plasmid and genomic sequences, we cannot exclude other factors associated with the particular developmental stage used. In the course of this study, we also examined the effect of other parameters that might enhance transformation yields. The method described is also significantly easier and faster than other current methods.


Asunto(s)
Aspergillus nidulans/genética , Transformación Genética/genética , Aspergillus nidulans/metabolismo , Pared Celular/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Protoplastos/metabolismo , Transformación Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...