Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585836

RESUMEN

Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the precise mechanisms underlying the complexity of different types of tau pathology remain incompletely understood. Here we describe an approach for proteomic profiling of aggregate-associated proteomes on slides with formalin-fixed, paraffin-embedded (FFPE) tissue that utilizes proximity labelling upon high preservation of aggregate morphology, which permits the profiling of pathological aggregates regardless of their size. To comprehensively investigate the common and unique protein interactors associated with the variety of tau lesions present across different human tauopathies, Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP), were selected to represent the major tauopathy diseases. Implementation of our widely applicable Probe-dependent Proximity Profiling (ProPPr) strategy, using the AT8 antibody, permitted identification and quantification of proteins associated with phospho-tau lesions in well-characterized human post-mortem tissue. The analysis revealed both common and disease-specific proteins associated with phospho-tau aggregates, highlighting potential targets for therapeutic intervention and biomarker development. Candidate validation through high-resolution co-immunofluorescence of distinct aggregates across disease and control cases, confirmed the association of retromer complex protein VPS35 with phospho-tau lesions across the studied tauopathies. Furthermore, we discovered disease-specific associations of proteins including ferritin light chain (FTL) and the neuropeptide precursor VGF within distinct pathological lesions. Notably, examination of FTL-positive microglia in CBD astrocytic plaques indicate a potential role for microglial involvement in the pathogenesis of these tau lesions. Our findings provide valuable insights into the proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes across different tauopathies enhances our understanding of disease heterogeneity and provides a resource for future functional investigation, as well as development of targeted therapies and diagnostic biomarkers.

2.
JAMA Neurol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619853

RESUMEN

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.

3.
Neurology ; 101(14): e1412-e1423, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37580158

RESUMEN

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is neuropathologically classified into 3 corticolimbic subtypes based on the neurofibrillary tangle distribution throughout the hippocampus and association cortices: limbic predominant, typical, and hippocampal sparing. In vivo, a fourth subtype, dubbed "minimal atrophy," was identified using structural MRI. The objective of this study was to identify a neuropathologic proxy for the neuroimaging-defined minimal atrophy subtype. METHODS: We applied 2 strategies in the Florida Autopsied Multi-Ethnic (FLAME) cohort to evaluate a neuropathologic proxy for the minimal atrophy subtype. In the first strategy, we selected AD cases with a Braak tangle stage IV (Braak IV) because of the relative paucity of neocortical tangle involvement compared with Braak >IV. Braak IV cases were compared with the 3 AD subtypes. In the alternative strategy, typical AD was stratified by brain weight and cases having a relatively high brain weight (>75th percentile) were defined as minimal atrophy. RESULTS: Braak IV cases (n = 37) differed from AD subtypes (limbic predominant [n = 174], typical [n = 986], and hippocampal sparing [n = 187] AD) in having the least years of education (median 12 years, group-wise p < 0.001) and the highest brain weight (median 1,140 g, p = 0.002). Braak IV cases most resembled the limbic predominant cases owing to their high proportion of APOE ε4 carriers (75%, p < 0.001), an amnestic syndrome (100%, p < 0.001), as well as older age of cognitive symptom onset and death (median 79 and 85 years, respectively, p < 0.001). Only 5% of Braak IV cases had amygdala-predominant Lewy bodies (the lowest frequency observed, p = 0.017), whereas 32% had coexisting pathology of Lewy body disease, which was greater than the other subtypes (p = 0.005). Nearly half (47%) of the Braak IV samples had coexisting limbic predominant age-related TAR DNA-binding protein 43 encephalopathy neuropathologic change. Cases with a high brain weight (n = 201) were less likely to have amygdala-predominant Lewy bodies (14%, p = 0.006) and most likely to have Lewy body disease (31%, p = 0.042) compared with those with middle (n = 455) and low (n = 203) brain weight. DISCUSSION: The frequency of Lewy body disease was increased in both neuropathologic proxies of the minimal atrophy subtype. We hypothesize that Lewy body disease may underlie cognitive decline observed in minimal atrophy cases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad de Alzheimer/patología , Estudios Retrospectivos , Enfermedad por Cuerpos de Lewy/patología , Ovillos Neurofibrilares/patología , Encéfalo/patología , Atrofia/patología
4.
Neurology ; 101(3): e289-e299, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37268436

RESUMEN

BACKGROUND AND OBJECTIVES: Corticobasal syndrome (CBS) is a clinical phenotype characterized by asymmetric parkinsonism, rigidity, myoclonus, and apraxia. Originally believed secondary to corticobasal degeneration (CBD), mounting clinicopathologic studies have revealed heterogenous neuropathologies. The objectives of this study were to determine the pathologic heterogeneity of CBS, the clinicoradiologic findings associated with different underlying pathologies causing CBS, and the positive predictive value (PPV) of current diagnostic criteria for CBD among patients with a CBS. METHODS: Clinical data, brain MRI, and neuropathologic data of patients followed at Mayo Clinic and diagnosed with CBS antemortem were reviewed according to neuropathology category at autopsy. RESULTS: The cohort consisted of 113 patients with CBS, 61 (54%) female patients. Mean ± SD disease duration was 7 ± 3.7 years; mean ± SD age at death was 70.5 ± 9.1 years. The primary neuropathologic diagnoses were 43 (38%) CBD, 27 (24%) progressive supranuclear palsy (PSP), 17 (15%) Alzheimer disease (AD), 10 (9%) frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein 43 (TDP) inclusions, 7 (6%) diffuse Lewy body disease (DLBD)/AD, and 9 (8%) with other diagnoses. Patients with CBS-AD or CBS-DLBD/AD were youngest at death (median [interquartile range]: 64 [13], 64 [11] years) while CBS-PSP were oldest (77 [12.5] years, p = 0.024). Patients with CBS-DLBD/AD had the longest disease duration (9 [6] years), while CBS-other had the shortest (3 [4.25] years, p = 0.04). Posterior cortical signs and myoclonus were more characteristic of patients with CBS-AD and patients with CBS-DLBD/AD. Patients with CBS-DLBD/AD displayed more features of Lewy body dementia. Voxel-based morphometry revealed widespread cortical gray matter loss characteristic of CBS-AD, while CBS-CBD and CBS-PSP predominantly involved premotor regions with greater amount of white matter loss. Patients with CBS-DLBD/AD showed atrophy in a focal parieto-occipital region, and patients with CBS-FTLD-TDP had predominant prefrontal cortical loss. Patients with CBS-PSP had the lowest midbrain/pons ratio (p = 0.012). Of 67 cases meeting clinical criteria for possible CBD at presentation, 27 were pathology-proven CBD, yielding a PPV of 40%. DISCUSSION: A variety of neurodegenerative disorders can be identified in patients with CBS, but clinical and regional imaging differences aid in predicting underlying neuropathology. PPV analysis of the current CBD diagnostic criteria revealed suboptimal performance. Biomarkers adequately sensitive and specific for CBD are needed.


Asunto(s)
Enfermedad de Alzheimer , Degeneración Corticobasal , Enfermedad por Cuerpos de Lewy , Mioclonía , Parálisis Supranuclear Progresiva , Femenino , Masculino , Humanos , Mioclonía/complicaciones , Parálisis Supranuclear Progresiva/metabolismo , Enfermedad de Alzheimer/complicaciones , Imagen por Resonancia Magnética , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/complicaciones
5.
Acta Neuropathol ; 146(1): 13-29, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269398

RESUMEN

While plasma biomarkers for Alzheimer's disease (AD) are increasingly being evaluated for clinical diagnosis and prognosis, few population-based autopsy studies have evaluated their utility in the context of predicting neuropathological changes. Our goal was to investigate the utility of clinically available plasma markers in predicting Braak staging, neuritic plaque score, Thal phase, and overall AD neuropathological change (ADNC).We utilized a population-based prospective study of 350 participants with autopsy and antemortem plasma biomarker testing using clinically available antibody assay (Quanterix) consisting of Aß42/40 ratio, p-tau181, GFAP, and NfL. We utilized a variable selection procedure in cross-validated (CV) logistic regression models to identify the best set of plasma predictors along with demographic variables, and a subset of neuropsychological tests comprising the Mayo Clinic Preclinical Alzheimer Cognitive Composite (Mayo-PACC). ADNC was best predicted with plasma GFAP, NfL, p-tau181 biomarkers along with APOE ε4 carrier status and Mayo-PACC cognitive score (CV AUC = 0.798). Braak staging was best predicted using plasma GFAP, p-tau181, and cognitive scores (CV AUC = 0.774). Neuritic plaque score was best predicted using plasma Aß42/40 ratio, p-tau181, GFAP, and NfL biomarkers (CV AUC = 0.770). Thal phase was best predicted using GFAP, NfL, p-tau181, APOE ε4 carrier status and Mayo-PACC cognitive score (CV AUC = 0.754). We found that GFAP and p-tau provided non-overlapping information on both neuritic plaque and Braak stage scores whereas Aß42/40 and NfL were mainly useful for prediction of neuritic plaque scores. Separating participants by cognitive status improved predictive performance, particularly when plasma biomarkers were included. Plasma biomarkers can differentially inform about overall ADNC pathology, Braak staging, and neuritic plaque score when combined with demographics and cognitive variables and have significant utility for earlier detection of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Placa Amiloide/patología , Estudios Prospectivos , Apolipoproteína E4 , Biomarcadores , Proteínas tau , Péptidos beta-Amiloides
6.
Acta Neuropathol ; 145(2): 159-173, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36512061

RESUMEN

An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Enfermedad de Alzheimer/patología , Demencia Frontotemporal/patología , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética
7.
Mol Neurodegener ; 17(1): 85, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575455

RESUMEN

BACKGROUND: Advances in ultrasensitive detection of phosphorylated tau (p-tau) in plasma has enabled the use of blood tests to measure Alzheimer's disease (AD) biomarker changes. Examination of postmortem brains of participants with antemortem plasma p-tau levels remains critical to understanding comorbid and AD-specific contribution to these biomarker changes. METHODS: We analyzed 35 population-based Mayo Clinic Study of Aging participants with plasma p-tau at threonine 181 and threonine 217 (p-tau181, p-tau217) available within 3 years of death. Autopsied participants included cognitively unimpaired, mild cognitive impairment, AD dementia, and non-AD neurodegenerative disorders. Global neuropathologic scales of tau, amyloid-ß, TDP-43, and cerebrovascular disease were examined. Regional digital pathology measures of tau (phosphorylated threonine 181 and 217 [pT181, pT217]) and amyloid-ß (6F/3D) were quantified in hippocampus and parietal cortex. Neurotransmitter hubs reported to influence development of tangles (nucleus basalis of Meynert) and amyloid-ß plaques (locus coeruleus) were evaluated. RESULTS: The strongest regional associations were with parietal cortex for tau burden (p-tau181 R = 0.55, p = 0.003; p-tau217 R = 0.66, p < 0.001) and amyloid-ß burden (p-tau181 R = 0.59, p < 0.001; p-tau217 R = 0.71, p < 0.001). Linear regression analysis of global neuropathologic scales explained 31% of variability in plasma p-tau181 (Adj. R2 = 0.31) and 59% in plasma p-tau217 (Adj. R2 = 0.59). Neither TDP-43 nor cerebrovascular disease global scales independently contributed to variability. Global scales of tau pathology (ß-coefficient = 0.060, p = 0.016) and amyloid-ß pathology (ß-coefficient = 0.080, p < 0.001) independently predicted plasma p-tau217 when modeled together with co-pathologies, but only amyloid-ß (ß-coefficient = 0.33, p = 0.021) significantly predicted plasma p-tau181. While nucleus basalis of Meynert neuron count/mm2 was not associated with plasma p-tau levels, a lower locus coeruleus neuron count/mm2 was associated with higher plasma p-tau181 (R = -0.50, p = 0.007) and higher plasma p-tau217 (R = -0.55, p = 0.002). Cognitive scores (Adj. R2 = 0.25-0.32) were predicted by the global tau scale, but not by the global amyloid-ß scale or plasma p-tau when modeled simultaneously. CONCLUSIONS: Higher soluble plasma p-tau levels may be the result of an intersection between insoluble deposits of amyloid-ß and tau accumulation in brain, and may be associated with locus coeruleus degeneration.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Locus Coeruleus/metabolismo , Locus Coeruleus/patología , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/patología , Biomarcadores
8.
J Alzheimers Dis ; 90(1): 405-417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213996

RESUMEN

BACKGROUND: Dementia, vascular disease, and cancer increase with age, enabling complex comorbid interactions. Understanding vascular and cancer contributions to dementia risk and neuropathology in oldest-old may improve risk modification and outcomes. OBJECTIVE: Investigate the contributions of vascular factors and cancer to dementia and neuropathology. METHODS: Longitudinal clinicopathologic study of prospectively followed Mayo Clinic participants dying≥95 years-old who underwent autopsy. Participants were stratified by dementia status and compared according to demographics, vascular risk factors, cancer, and neuropathology. RESULTS: Participants (n = 161; 83% female; 99% non-Hispanic whites)≥95 years (95-106 years-old) with/without dementia did not differ based on demographics. APOE ɛ2 frequency was higher in no dementia (20/72 [28%]) versus dementia (11/88 [12%]; p = 0.03), but APOE ɛ4 frequency did not differ. Coronary artery disease was more frequent in no dementia (31/72 [43%]) versus dementia (23/89 [26%]; p = 0.03) associated with 56% lower dementia odds (odds ratio [OR] = 0.44 [confidence interval (CI) = 0.19-0.98]; p = 0.04) and fewer neuritic/diffuse plaques. Diabetes had an 8-fold increase in dementia odds (OR = 8.42 [CI = 1.39-163]; p = 0.02). Diabetes associated with higher cerebrovascular disease (Dickson score; p = 0.05). Cancer associated with 63% lower dementia odds (OR = 0.37 [CI = 0.17-0.78]; p < 0.01) and lower Braak stage (p = 0.01). CONCLUSION: Cancer exposure in the oldest-old was associated with lower odds of dementia and tangle pathology, whereas history of coronary artery disease was associated with lower odds of dementia and amyloid-ß plaque pathology. History of diabetes mellitus was associated with increased odds of dementia and cerebrovascular disease pathology. Cancer-related mechanisms and vascular risk factor reduction strategies may alter dementia risk and neuropathology in oldest-old.


Asunto(s)
Enfermedad de Alzheimer , Trastornos Cerebrovasculares , Enfermedad de la Arteria Coronaria , Diabetes Mellitus , Neoplasias , Enfermedades del Sistema Nervioso , Femenino , Humanos , Anciano de 80 o más Años , Masculino , Enfermedad de Alzheimer/patología , Neuropatología , Placa Amiloide/patología , Trastornos Cerebrovasculares/epidemiología , Trastornos Cerebrovasculares/patología , Apolipoproteínas E , Diabetes Mellitus/epidemiología , Comorbilidad , Neoplasias/epidemiología
9.
Neurobiol Aging ; 119: 1-7, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35952440

RESUMEN

The objective of this study was to determine the differential mapping of plasma biomarkers to postmortem neuropathology measures. We identified 64 participants in a population-based study with antemortem plasma markers (amyloid-ß [Aß] x-42, Aßx-40, neurofilament light [NfL], and total tau [T-tau]) who also had neuropathologic assessments of Alzheimer's and cerebrovascular pathology. We conducted weighted linear-regression models to evaluate relationships between plasma measures and neuropathology. Higher plasma NfL and Aß42/40 ratio were associated with cerebrovascular neuropathologic scales (p < 0.05) but not with Braak stage, neuritic plaque score, or Thal phase. Plasma Aß42/40 and NfL explained up to 18% of the variability in cerebrovascular neuropathologic scales. In participants predominantly with modest levels of Alzheimer's pathologic change, biomarkers of amyloid and neurodegeneration were associated with cerebrovascular neuropathology. NfL is a non-specific marker of brain injury, therefore its association with cerebrovascular neuropathology was expected. The association between elevated Aß42/40 and cerebrovascular disease pathology needs further investigation but could be due to the use of less specific amyloid-ß assays (x-40, x-42).


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Trastornos Cerebrovasculares , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides , Biomarcadores , Humanos , Placa Amiloide/patología , Proteínas tau
10.
Acta Neuropathol ; 144(6): 1117-1125, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35841412

RESUMEN

Summarizing the multiplicity and heterogeneity of cerebrovascular disease (CVD) features into a single measure has been difficult in both neuropathology and imaging studies. The objective of this work was to evaluate the association between neuroimaging surrogates of CVD and two available neuropathologic CVD scales in those with both antemortem imaging CVD measures and postmortem CVD evaluation. Individuals in the Mayo Clinic Study of Aging with MRI scans within 5 years of death (N = 51) were included. Antemortem CVD measures were computed from diffusion MRI (dMRI), FLAIR, and T2* GRE imaging modalities and compared with postmortem neuropathologic findings using Kalaria and Strozyk Scales. Of all the neuroimaging measures, both regional and global dMRI measures were associated with Kalaria and Strozyk Scales (p < 0.05) and modestly correlated with global cognitive performance. The major conclusions from this study were: (i) microstructural white matter injury measurements using dMRI may be meaningful surrogates of neuropathologic CVD scales, because they aid in capturing diffuse (and early) changes to white matter and secondary neurodegeneration due to lesions; (ii) vacuolation in the corpus callosum may be associated with white matter changes measured on antemortem dMRI imaging; (iii) Alzheimer's disease neuropathologic change did not associate with neuropathologic CVD scales; and (iv) future work should be focused on developing better quantitative measures utilizing dMRI to optimally assess CVD-related neuropathologic changes.


Asunto(s)
Enfermedad de Alzheimer , Trastornos Cerebrovasculares , Sustancia Blanca , Humanos , Neuropatología , Imagen por Resonancia Magnética , Neuroimagen/métodos , Sustancia Blanca/patología , Trastornos Cerebrovasculares/complicaciones , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología
11.
Acta Neuropathol ; 144(1): 27-44, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697880

RESUMEN

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aß phase = 0 (lacking detectable Aß plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedades del Sistema Nervioso , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Amiloide , Autopsia , Proteínas de Unión al ADN , Humanos , Masculino , Placa Amiloide/patología
12.
Acta Neuropathol ; 141(5): 667-680, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33635380

RESUMEN

Progressive supranuclear palsy (PSP) is the second most common neurodegenerative Parkinsonian disorder after Parkinson's disease, and is characterized as a primary tauopathy. Leveraging the considerable clinical and neuropathologic heterogeneity associated with PSP, we measured tau neuropathology as quantitative traits to perform a genome-wide association study (GWAS) within PSP to identify genes and biological pathways that underlie the PSP disease process. In 882 PSP cases, semi-quantitative scores for phosphorylated tau-immunoreactive coiled bodies (CBs), neurofibrillary tangles (NFTs), tufted astrocytes (TAs), and tau threads were documented from 18 brain regions, and converted to latent trait (LT) variables using the R ltm package. LT analysis utilizes a multivariate regression model that links categorical responses to unobserved covariates allowing for a reduction of dimensionality, generating a single, continuous variable to account for the multiple lesions and brain regions assessed. We first tested for association with PSP LTs and the top PSP GWAS susceptibility loci. Significant SNP/LT associations were identified at rs242557 (MAPT H1c sub-haplotype) with hindbrain CBs and rs1768208 (MOBP) with forebrain tau threads. Digital microscopy was employed to quantify phosphorylated tau burden in midbrain tectum and red nucleus in 795 PSP cases and tau burdens were used as quantitative phenotypes in GWAS. Top associations were identified at rs1768208 with midbrain tectum and red nucleus tau burden. Additionally, we performed a PSP LT GWAS on an initial cohort, a follow-up SNP panel (37 SNPs, P < 10-5) in an extended cohort, and a combined analysis. Top SNP/LT associations were identified at SNPs in or near SPTBN5/EHD4, SEC13/ATP2B2, EPHB1/PPP2R3A, TBC1D8, IFNGR1/OLIG3, ST6GAL1, HK1, CALB1, and SGCZ. Finally, testing for SNP/transcript associations using whole transcriptome and whole genome data identified significant expression quantitative trait loci at rs3088159/SPTBN5/EHD4 and rs154239/GHRL. Modeling tau neuropathology heterogeneity using LTs as quantitative phenotypes in a GWAS may provide substantial insight into biological pathways involved in PSP by affecting regional tau burden.


Asunto(s)
Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Proteínas tau/genética , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Persona de Mediana Edad
13.
Acta Neuropathol Commun ; 8(1): 218, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287913

RESUMEN

The microtubule-associated protein tau (MAPT) H1 haplotype is the strongest genetic risk factor for corticobasal degeneration (CBD). However, the specific H1 subhaplotype association is not well defined, and it is not clear whether any MAPT haplotypes influence severity of tau pathology or clinical presentation in CBD. Therefore, in the current study we examined 230 neuropathologically confirmed CBD cases and 1312 controls in order to assess associations of MAPT haplotypes with risk of CBD, severity of tau pathology (measured as semi-quantitative scores for coiled bodies, neurofibrillary tangles, astrocytic plaques, and neuropil threads), age of CBD onset, and disease duration. After correcting for multiple testing (P < 0.0026 considered as significant), we confirmed the strong association between the MAPT H2 haplotype and decreased risk of CBD (Odds ratio = 0.26, P = 2 × 10-12), and also observed a novel association between the H1d subhaplotype and an increased CBD risk (Odds ratio = 1.76, P = 0.002). Additionally, although not statistically significant after correcting for multiple testing, the H1c haplotype was associated with a higher risk of CBD (Odds ratio = 1.49, P = 0.009). No MAPT haplotypes were significantly associated with any tau pathology measures, age of CBD onset, or disease duration. Though replication will be important and there is potential that population stratification could have influenced our findings, these results suggest that several MAPT H1 subhaplotypes are primarily responsible for the strong association between MAPT H1 and risk of CBD, but that H1 subhaplotypes are unlikely to play a major role in driving tau pathology or clinical features. Our findings also indicate that similarities in MAPT haplotype risk-factor profile exist between CBD and the related tauopathy progressive supranuclear palsy, with H2, H1d, and H1c displaying associations with both diseases.


Asunto(s)
Encéfalo/patología , Tauopatías/genética , Proteínas tau/genética , Edad de Inicio , Anciano , Anciano de 80 o más Años , Astrocitos/patología , Estudios de Casos y Controles , Cuerpos Enrollados/patología , Femenino , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Ovillos Neurofibrilares/patología , Hilos del Neurópilo/patología , Índice de Severidad de la Enfermedad , Tauopatías/patología , Tauopatías/fisiopatología
14.
Acta Neuropathol ; 136(5): 709-727, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30136084

RESUMEN

Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by tau pathology in neurons and glial cells. Transcriptional regulation has been implicated as a potential mechanism in conferring disease risk and neuropathology for some PSP genetic risk variants. However, the role of transcriptional changes as potential drivers of distinct cell-specific tau lesions has not been explored. In this study, we integrated brain gene expression measurements, quantitative neuropathology traits and genome-wide genotypes from 268 autopsy-confirmed PSP patients to identify transcriptional associations with unique cell-specific tau pathologies. We provide individual transcript and transcriptional network associations for quantitative oligodendroglial (coiled bodies = CB), neuronal (neurofibrillary tangles = NFT), astrocytic (tufted astrocytes = TA) tau pathology, and tau threads and genomic annotations of these findings. We identified divergent patterns of transcriptional associations for the distinct tau lesions, with the neuronal and astrocytic neuropathologies being the most different. We determined that NFT are positively associated with a brain co-expression network enriched for synaptic and PSP candidate risk genes, whereas TA are positively associated with a microglial gene-enriched immune network. In contrast, TA is negatively associated with synaptic and NFT with immune system transcripts. Our findings have implications for the diverse molecular mechanisms that underlie cell-specific vulnerability and disease risk in PSP.


Asunto(s)
Química Encefálica/genética , Expresión Génica/genética , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Tauopatías/genética , Tauopatías/patología , Anciano , Astrocitos/patología , Femenino , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Sistema Inmunológico/patología , Inmunohistoquímica , Masculino , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/patología , Neuronas/patología , Proteoma , ARN/biosíntesis , ARN/genética , Sinapsis/patología
15.
Mol Neurodegener ; 13(1): 37, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986742

RESUMEN

BACKGROUND: Progressive supranuclear palsy (PSP) is a parkinsonian neurodegenerative tauopathy affecting brain regions involved in motor function, including the basal ganglia, diencephalon and brainstem. While PSP is largely considered to be a sporadic disorder, cases with suspected familial inheritance have been identified and the common MAPT H1haplotype is a major genetic risk factor. Due to the relatively low prevalence of PSP, large sample sizes can be difficult to achieve, and this has limited the ability to detect true genetic risk factors at the genome-wide statistical threshold for significance in GWAS data. With this in mind, in this study we genotyped the genetic variants that displayed the strongest degree of association with PSP (P<1E-4) in the previous GWAS in a new cohort of 533 pathologically-confirmed PSP cases and 1172 controls, and performed a combined analysis with the previous GWAS data. RESULTS: Our findings validate the known association of loci at MAPT, MOBP, EIF2AK3 and STX6 with risk of PSP, and uncover novel associations with SLCO1A2 (rs11568563) and DUSP10 (rs6687758) variants, both of which were classified as non-significant in the original GWAS. CONCLUSIONS: Resolving the genetic architecture of PSP will provide mechanistic insights and nominate candidate genes and pathways for future therapeutic intervention strategies.


Asunto(s)
Fosfatasas de Especificidad Dual/genética , Predisposición Genética a la Enfermedad/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Transportadores de Anión Orgánico/genética , Parálisis Supranuclear Progresiva/genética , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
16.
Acta Neuropathol ; 136(3): 389-404, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29926172

RESUMEN

Corticobasal degeneration (CBD) is a clinically heterogeneous tauopathy, which has overlapping clinicopathologic and genetic characteristics with progressive supranuclear palsy (PSP). This study aimed to elucidate whether transactive response DNA-binding protein of 43 kDa (TDP-43) pathology contributes to clinicopathologic heterogeneity of CBD. Paraffin-embedded sections of the midbrain, pons, subthalamic nucleus, and basal forebrain from 187 autopsy-confirmed CBD cases were screened with immunohistochemistry for phospho-TDP-43. In cases with TDP-43 pathology, additional brain regions (i.e., precentral, cingulate, and superior frontal gyri, hippocampus, medulla, and cerebellum) were immunostained. Hierarchical clustering analysis was performed based on the topographical distribution and severity of TDP-43 pathology, and clinicopathologic and genetic features were compared between the clusters. TDP-43 pathology was observed in 45% of CBD cases, most frequently in midbrain tegmentum (80% of TDP-43-positive cases), followed by subthalamic nucleus (69%). TDP-43-positive CBD was divided into TDP-limited (52%) and TDP-severe (48%) by hierarchical clustering analysis. TDP-severe patients were more likely to have been diagnosed clinically as PSP compared to TDP-limited and TDP-negative patients (80 vs 32 vs 30%, P < 0.001). The presence of downward gaze palsy was the strongest factor for the antemortem diagnosis of PSP, and severe TDP-43 pathology in the midbrain tectum was strongly associated with downward gaze palsy. In addition, tau burden in the olivopontocerebellar system was significantly greater in TDP-positive than TDP-negative CBD. Genetic analyses revealed that MAPT H1/H1 genotype frequency was significantly lower in TDP-severe than in TDP-negative and TDP-limited CBD (65 vs 89 vs 91%, P < 0.001). The homozygous minor allele frequencies in GRN rs5848 and TMEM106B rs3173615 were not significantly different between the three groups. In conclusion, the present study indicates that CBD with severe TDP-43 pathology is a distinct clinicopathologic subtype of CBD, characterized by PSP-like clinical presentations, severe tau pathology in the olivopontocerebellar system, and low frequency of MAPT H1 haplotype.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Degeneración Nerviosa/metabolismo , Parálisis Supranuclear Progresiva/etiología , Tauopatías/complicaciones , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Degeneración Nerviosa/patología , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo
17.
JAMA Neurol ; 75(7): 860-875, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29630712

RESUMEN

Importance: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by loss of upper and lower motor neurons. Although novel ALS genetic variants have been identified, the shared genetic risk between ALS and other neurodegenerative disorders remains poorly understood. Objectives: To examine whether there are common genetic variants that determine the risk for ALS and other neurodegenerative diseases and to identify their functional pathways. Design, Setting, and Participants: In this study conducted from December 1, 2016, to August 1, 2017, the genetic overlap between ALS, sporadic frontotemporal dementia (FTD), FTD with TDP-43 inclusions, Parkinson disease (PD), Alzheimer disease (AD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP) were systematically investigated in 124 876 cases and controls. No participants were excluded from this study. Diagnoses were established using consensus criteria. Main Outcomes and Measures: The primary outcomes were a list of novel loci and their functional pathways in ALS, FTD, PSP, and ALS mouse models. Results: Among 124 876 cases and controls, genome-wide conjunction analyses of ALS, FTD, PD, AD, CBD, and PSP revealed significant genetic overlap between ALS and FTD at known ALS loci: rs13302855 and rs3849942 (nearest gene, C9orf72; P = .03 for rs13302855 and P = .005 for rs3849942) and rs4239633 (nearest gene, UNC13A; P = .03). Significant genetic overlap was also found between ALS and PSP at rs7224296, which tags the MAPT H1 haplotype (nearest gene, NSF; P = .045). Shared risk genes were enriched for pathways involving neuronal function and development. At a conditional FDR P < .05, 22 novel ALS polymorphisms were found, including rs538622 (nearest gene, ERGIC1; P = .03 for ALS and FTD), which modifies BNIP1 expression in human brains (35 of 137 females; mean age, 59 years; P = .001). BNIP1 expression was significantly reduced in spinal cord motor neurons from patients with ALS (4 controls: mean age, 60.5 years, mean [SE] value, 3984 [760.8] arbitrary units [AU]; 7 patients with ALS: mean age, 56 years, mean [SE] value, 1999 [274.1] AU; P = .02), in an ALS mouse model (mean [SE] value, 13.75 [0.09] AU for 2 SOD1 WT mice and 11.45 [0.03] AU for 2 SOD1 G93A mice; P = .002) and in brains of patients with PSP (80 controls: 39 females; mean age, 82 years, mean [SE] value, 6.8 [0.2] AU; 84 patients with PSP: 33 females, mean age 74 years, mean [SE] value, 6.8 [0.1] AU; ß = -0.19; P = .009) or FTD (11 controls: 4 females; mean age, 67 years; mean [SE] value, 6.74 [0.05] AU; 17 patients with FTD: 10 females; mean age, 69 years; mean [SE] value, 6.53 [0.04] AU; P = .005). Conclusions and Relevance: This study found novel genetic overlap between ALS and diseases of the FTD spectrum, that the MAPT H1 haplotype confers risk for ALS, and identified the mitophagy-associated, proapoptotic protein BNIP1 as an ALS risk gene. Together, these findings suggest that sporadic ALS may represent a selectively pleiotropic, polygenic disorder.


Asunto(s)
Enfermedad de Alzheimer/genética , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Enfermedad de Parkinson/genética , Parálisis Supranuclear Progresiva/genética , Enfermedades de los Ganglios Basales/genética , Proteína C9orf72/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Superóxido Dismutasa-1/genética , Proteinopatías TDP-43/genética , Proteínas de Transporte Vesicular/genética , Proteínas tau/genética
18.
PLoS Med ; 15(1): e1002487, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29315334

RESUMEN

BACKGROUND: Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. METHODS AND FINDINGS: Using large genome-wide association studies (GWASs) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with FTD-related disorders-namely, FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS)-and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold). For FTD, at a conjunction false discovery rate < 0.05 and after excluding SNPs in linkage disequilibrium, we found that 8 of the 15 identified loci mapped to the human leukocyte antigen (HLA) region on Chromosome (Chr) 6. We also found novel candidate FTD susceptibility loci within LRRK2 (leucine rich repeat kinase 2), TBKBP1 (TBK1 binding protein 1), and PGBD5 (piggyBac transposable element derived 5). Functionally, we found that the expression of FTD-immune pleiotropic genes (particularly within the HLA region) is altered in postmortem brain tissue from patients with FTD and is enriched in microglia/macrophages compared to other central nervous system cell types. The main study limitation is that the results represent only clinically diagnosed individuals. Also, given the complex interconnectedness of the HLA region, we were not able to define the specific gene or genes on Chr 6 responsible for our pleiotropic signal. CONCLUSIONS: We show immune-mediated genetic enrichment specifically in FTD, particularly within the HLA region. Our genetic results suggest that for a subset of patients, immune dysfunction may contribute to FTD risk. These findings have potential implications for clinical trials targeting immune dysfunction in patients with FTD.


Asunto(s)
Demencia Frontotemporal/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Anciano , Humanos , Persona de Mediana Edad
20.
Acta Neuropathol ; 133(5): 825-837, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28271184

RESUMEN

Corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and a subset of frontotemporal dementia (FTD) are neurodegenerative disorders characterized by tau inclusions in neurons and glia (tauopathies). Although clinical, pathological and genetic evidence suggests overlapping pathobiology between CBD, PSP, and FTD, the relationship between these disorders is still not well understood. Using summary statistics (odds ratios and p values) from large genome-wide association studies (total n = 14,286 cases and controls) and recently established genetic methods, we investigated the genetic overlap between CBD and PSP and CBD and FTD. We found up to 800-fold enrichment of genetic risk in CBD across different levels of significance for PSP or FTD. In addition to NSF (tagging the MAPT H1 haplotype), we observed that SNPs in or near MOBP, CXCR4, EGFR, and GLDC showed significant genetic overlap between CBD and PSP, whereas only SNPs tagging the MAPT haplotype overlapped between CBD and FTD. The risk alleles of the shared SNPs were associated with expression changes in cis-genes. Evaluating transcriptome levels across adult human brains, we found a unique neuroanatomic gene expression signature for each of the five overlapping gene loci (omnibus ANOVA p < 2.0 × 10-16). Functionally, we found that these shared risk genes were associated with protein interaction and gene co-expression networks and showed enrichment for several neurodevelopmental pathways. Our findings suggest: (1) novel genetic overlap between CBD and PSP beyond the MAPT locus; (2) strong ties between CBD and FTD through the MAPT clade, and (3) unique combinations of overlapping genes that may, in part, influence selective regional or neuronal vulnerability observed in specific tauopathies.


Asunto(s)
Demencia Frontotemporal/patología , Neuronas/patología , Parálisis Supranuclear Progresiva/patología , Enfermedades de los Ganglios Basales/genética , Enfermedades de los Ganglios Basales/patología , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Humanos , Cuerpos de Inclusión/patología , Factores de Riesgo , Parálisis Supranuclear Progresiva/diagnóstico , Parálisis Supranuclear Progresiva/genética , Tauopatías/patología , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA